目录
小点:
1,递归的使用会造成栈空间的消耗,使用递归,即使在程序正确的前提下,也存在程序崩溃的风险
2,递归是可以改写为非递归的,方法或是直接改为循环(迭代)或是通过栈来间接实现循环
非递归实现快速排序使用间接的方式实现,即通过栈这一数据结构来辅助实现。
注意一点:通常递归方式中改变的是什么因素,栈中存储的就是什么元素。比如,快速排序中,递归的方式中不断变化的是目标区间的首尾元素下标
观察递归方式中目标区间首尾元素下标变化:
在每一层递归做的都是同一件事:将当前目标区间的关键字放到正确的位置上(通过分组的方法,分为小于关键字的一组和大于关键字的一组),而每次改变的是范围,也就是首尾元素下标。如果通过非递归的方式做到递归的效果,便可实现非递归。
栈的辅助(栈的实现可以调用之前实现的数据结构):
每次压栈都是压两个元素(目标空间的首尾下标),通过首尾下标可以确定目标空间
1,初始状态
将整个数组的首元素下标和尾元素下标压栈(此时目标区间为整个数组)
2,循环
变量begin从栈中拿到标记目标数组首位的下标,变量end拿到栈中拿到标记目标数组末尾的下标,(一首一尾均出栈),通过分组的方法,将当前目标区间的关键字放到正确的位置上,并拿到关键字最后所在位置,即下标prev
判断:[begin,prev-1]、[prev+1,end]两区间元素数量是否满足两个及以上,如果是,则对两区间的首尾下标进行压栈,重复循环;如果否,则不需操作(如果只有一个元素,则已经在正确的位置上了;如果没有元素,则跳过)
3,终止
当栈为空时,说明没有标记的区间了,排序完成
4,注意
注意栈的特性,先入后出,后入先出,注意左目标空间与右目标空间入栈顺序,以及首元素下标与尾元素下标入栈顺序
int _QuickSortNonR(int* nums, int left, int right)
{
int prev = left;
int cur = prev + 1;
int mid = MidNum(nums, left, right);
Swap(&nums[left], &nums[mid]);
int keyi = left;
while (cur <= right)
{
if (nums[cur] < nums[keyi] && ++prev != cur)
{
Swap(&nums[prev], &nums[cur]);
}
cur++;
}
Swap(&nums[keyi], &nums[prev]);
return prev;
}
void QuickSortNonR(int* nums, int left, int right)
{
Stack stack;
StackInit(&stack);
StackPush(&stack, right);
StackPush(&stack, left);
while (StackEmpty(&stack) != true)
{
int begin = StackTop(&stack);
StackPop(&stack);
int end = StackTop(&stack);
StackPop(&stack);
int partion = _QuickSortNonR(nums, begin, end);
if (partion + 1 < end)
{
StackPush(&stack, end);
StackPush(&stack, partion + 1);
}
if (partion - 1 > begin)
{
StackPush(&stack, partion - 1);
StackPush(&stack, begin);
}
}
StackDestroy(&stack);
}