本文全方位介绍了图像处理、深度学习与计算机视觉的概念、异同以及联系
一. 简述
1. 概念:
- 计算机视觉(computer vision technique)又称机器视觉,是从图像或者视频中提出符号或者数值信息,分析计算该信息以进行目标的识别、检测和跟踪等。更形象的说,计算机视觉就是让计算机像人类一样能看到图像,并看懂理解图像。
- 图像处理(image processing)是指用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。图像处理技术一般包括图像压缩,增强和复原,匹配、描述和识别3个部分。
- 深度学习(deep learning)是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
2. 常用技术:
计算机视觉常用技术:
-
图像处理能力赋予了计算机看即获取的能力,是人工智能的重要输入。
-
图像描述是图像理解的前提,其作用是挖掘一般或主要信息去描述图像。
-
模式识别、机器学习、深度学习等算法赋予计算机看懂的能力,是人工智能的核心,更形象的说就是让计算机像人的大脑去理解图像。
图像处理常用技术:
- 图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
- 图像编码压缩</