回溯是递归的副产品,只要有递归就会有回溯。回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案。回溯法并不高效,它解决的问题都可以抽象为树形结构。
题目1:组合总和lll
题目:
问题分析:这道题采用递归加回溯的方法来求解。同时加入剪枝的操作,path中的元素个数为path.size(),还需要找k-path.size()个元素,现在搜寻到第i个,可以搜9-i+1个,所以必须要满足9-i+1>=k-path.size(),即i<=9-(k-path.size())+1。
代码:
class Solution {
List<List<Integer>> result=new ArrayList<>();
LinkedList<Integer> path=new LinkedList<>();
public List<List<Integer>> combinationSum3(int k, int n) {
backTracking(k,n,1,0);
return result;
}
private void backTracking(int k,int n,int startIndex,int sum){
if(sum>n)return;//属于剪枝操作,当和已经大于给定目标和,就没有计算的必要了
if(path.size()==k){
if(sum==n){
result.add(new ArrayList(path));
}
return;
}
for(int i=startIndex;i<=9-(k-path.size())+1;i++){
path.add(i);
sum+=i;
backTracking(k,n,i+1,sum);
path.removeLast();//回溯的操作
sum-=i;
}
}
}
时间复杂度O(1).
题目2:组合总和ll
题目:
问题分析:这道题的难点在于candidates中的元素是有重复的,但是解集中的组合不能重复。一开始的做法中并没有考虑重复组合的问题,看了代码随想录的讲解才明白要对数组进行排序,対重复出现的数组元素进行去重。
代码
class Solution {
List<List<Integer>> result=new ArrayList<>();
List<Integer> path=new ArrayList<>();
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
if(candidates==null||candidates.length==0)return result;
Arrays.sort(candidates);//对数组进行排序
backTracking(candidates,target,0);
return result;
}
int sum=0;
private void backTracking(int[] candidates,int target,int startIndex){
if(sum>target) return;
if(sum==target){
result.add(new ArrayList<>(path));
return;
}
for(int i=startIndex;i<candidates.length;i++){
if(i>startIndex&&candidates[i]==candidates[i-1])continue;
path.add(candidates[i]);
sum+=candidates[i];
backTracking(candidates,target,i+1);
path.removeLast();
sum-=candidates[i];
}
}
}
时间复杂度O(2^N).
题目3:分割回文串
题目:
问题分析:这道题的难点在于分析回文子串分割的逻辑,然后再想着怎么分割。每次递归都重新定义了一个StringBuilder类的对象。
代码:
class Solution {
List<List<String>> result=new ArrayList<>();
List<String> cur=new ArrayList<>();
public List<List<String>> partition(String s) {
backTracking(s,0,new StringBuilder());
return result;
}
private void backTracking(String s,int start,StringBuilder sb){
if(start==s.length()){
result.add(new ArrayList<>(cur));//因为cur是一个引用变量,不copy一份的话,cur的动态变化会影响到result的结果,造成污染
return;
}
for(int i=start;i<s.length();i++){
sb.append(s.charAt(i));
if(check(sb)){//判断当前的sb是否是回文串
cur.add(sb.toString());//[start,i]之间的字符串为回文串,接着判断后面的子串是否为回文串
backTracking(s,i+1,new StringBuilder());
cur.remove(cur.size()-1);
}
}
}
private boolean check(StringBuilder sb){
for(int i=0,j=sb.length()-1;i<j;i++,j--){
if(sb.charAt(i)!=sb.charAt(j))return false;
}
return true;
}
}
时间复杂度O(2^N)