题目
给你一个整数数组 nums
,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]
是数组 [0,3,1,6,2,2,7]
的子序列。
示例
思路
对于本题可以运用动态规划,我们遍历整个数组同时保存每个元素能与前面元素组成的递增子序列长度,并将其保存在对应的dp数组中
定义dp数组,dp[i]是数组中第i个位置能组成的最大递增子序列
遍历整个数组同时遍历dp数组,如果数组中元素能与当前元素组成递增子序列,则将最大子序列的dp[i]值+1保存到当前位置
可以设置一个变量保存每次dp的最大值
代码
#define MAX(a , b) ((a) > (b) ? (a) : (b))
/*
*int lengthOfLIS(int* nums, int numsSize)
int lengthOfLIS:找整数数组中最长递增子序列
int* nums:整数数组
int numsSize:数组长度
返回值:最长递增子序列的长度
*/
int lengthOfLIS(int* nums, int numsSize){
int dp[numsSize];
dp[0] = 1;
int dpMax = 1;
int max = 1;
int i, j;
for(i = 1; i < numsSize; i++)
{
// if(nums[i] <= nums[i-1])
// {
// dp[i] = 1;
// continue;
// }
for(j = i-1, dpMax = 0; j >= 0; j--)
{
if(nums[i] > nums[j])
{
dpMax = MAX(dpMax , dp[j]);
}
}
dp[i] = dpMax + 1;
max = MAX(max, dp[i]);
}
for(i = 0; i < numsSize; i++)
printf("%d\n", dp[i]);
return max;
}
时间空间复杂度