300.最长递增子序列

题目

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

 

示例

 

思路

对于本题可以运用动态规划,我们遍历整个数组同时保存每个元素能与前面元素组成的递增子序列长度,并将其保存在对应的dp数组中

定义dp数组,dp[i]是数组中第i个位置能组成的最大递增子序列

遍历整个数组同时遍历dp数组,如果数组中元素能与当前元素组成递增子序列,则将最大子序列的dp[i]值+1保存到当前位置

可以设置一个变量保存每次dp的最大值

代码

#define MAX(a , b) ((a) > (b) ? (a) : (b))

/*
*int lengthOfLIS(int* nums, int numsSize)
int lengthOfLIS:找整数数组中最长递增子序列
int* nums:整数数组
int numsSize:数组长度
返回值:最长递增子序列的长度
*/

int lengthOfLIS(int* nums, int numsSize){
    int dp[numsSize];
    dp[0] = 1;
    int dpMax = 1;
    int max = 1;
    int i, j;
    for(i = 1; i < numsSize; i++)
    {
        // if(nums[i] <= nums[i-1])
        // {
        //     dp[i] = 1;
        //     continue;
        // }
        for(j = i-1, dpMax = 0; j >= 0; j--)
        {
            if(nums[i] > nums[j])
            {
                dpMax = MAX(dpMax , dp[j]);
            }
        }
        dp[i] = dpMax + 1;
        max = MAX(max, dp[i]);
    }
    for(i = 0; i < numsSize; i++)
        printf("%d\n", dp[i]);
    return max;
}

时间空间复杂度

 

Python中实现最长递增子序列的代码如下所示: ```python def LIS(arr): n = len(arr) dp = [1 * n for i in range(n): for j in range(i): if arr[j < arr[i]: dp[i = max(dp[i], dp[j + 1) return max(dp) ``` 这段代码使用了动态规划的思想来解决最长递增子序列的问题。对于给定的数组arr,首先创建一个长度为n的dp数组,其中dp[i]表示以arr[i]为结尾的最长递增子序列的长度。然后,使用两个循环遍历arr中的每个元素,并通过比较前面的元素与当前元素的大小关系来更新dp数组。最后,返回dp数组中的最大值,即为最长递增子序列的长度。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [Python实现最长递增子序列算法](https://blog.csdn.net/qq_39605374/article/details/131115627)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [300. 最长递增子序列(Python 实现)](https://blog.csdn.net/d_l_w_d_l_w/article/details/118709308)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值