龙龙是“饱了呀”外卖软件的注册骑手,负责送帕特小区的外卖。帕特小区的构造非常特别,都是双向道路且没有构成环 —— 你可以简单地认为小区的路构成了一棵树,根结点是外卖站,树上的结点就是要送餐的地址。
每到中午 12 点,帕特小区就进入了点餐高峰。一开始,只有一两个地方点外卖,龙龙简单就送好了;但随着大数据的分析,龙龙被派了更多的单子,也就送得越来越累……
看着一大堆订单,龙龙想知道,从外卖站出发,访问所有点了外卖的地方至少一次(这样才能把外卖送到)所需的最短路程的距离到底是多少?每次新增一个点外卖的地址,他就想估算一遍整体工作量,这样他就可以搞明白新增一个地址给他带来了多少负担。
输入格式:
输入第一行是两个数 N 和 M (2≤N≤105, 1≤M≤105),分别对应树上节点的个数(包括外卖站),以及新增的送餐地址的个数。
接下来首先是一行 N 个数,第 i 个数表示第 i 个点的双亲节点的编号。节点编号从 1 到 N,外卖站的双亲编号定义为 −1。
接下来有 M 行,每行给出一个新增的送餐地点的编号 Xi。保证送餐地点中不会有外卖站,但地点有可能会重复。
为了方便计算,我们可以假设龙龙一开始一个地址的外卖都不用送,两个相邻的地点之间的路径长度统一设为 1,且从外卖站出发可以访问到所有地点。
注意:所有送餐地址可以按任意顺序访问,且完成送餐后无需返回外卖站。
输出格式:
对于每个新增的地点,在一行内输出题目需要求的最短路程的距离。
输入样例
7 4
-1 1 1 1 2 2 3
5
6
2
4
输出样例
2
4
4
6
#include<bits/stdc++.h>
using namespace std;
const int N=100010;
int n,m,t;
int f[N];//记录节点的父节点
int d[N];//记录各节点到外卖站的距离
bool vis[N];//标记经过的节点,避免再次计算
int dist1=0;
//计算新增节点需要经过的边数
void dfs1(int root,int dist){
if(root==t||vis[root]){
dist1+=dist;
return;
}
vis[root]=true;
dfs1(f[root],dist+2);
}
//计算外卖站到节点的距离
int dfs2(int root){
if(d[root]||root==t){
return d[root];
}
return d[root]=dfs2(f[root])+1;
}
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++){
f[i]=i;
}
for(int i=1;i<=n;i++){
int x;
cin>>x;
f[i]=x;
if(x==-1)
t=i;
}
int distmax=0;
while(m--){
int x;
cin>>x;
dfs1(x,0);
distmax=max(dfs2(x),distmax);
cout<<dist1-distmax<<endl;
}
return 0;
}