归并排序(分治)的思想:
1、将原问题分解成若干个子问题,这些问题是原问题的规模较小的实例
2、解决这些子问题:递归求解各子问题。如果子问题的规模足够小,则直接求解。
3、合并这些子问题的解成原问题的解。
代码如下:
#include <stdio.h>
#include <stdlib.h>
void merge(int *pArr, int iLow, int iMid, int iHigh)
{
if(pArr == NULL)
{
return;
}
//C++可以用new int *pTmpArr = new int[iHigh - iLow + 1];
int *pTmpArr = (int*)malloc(sizeof(int)*(iHigh - iLow + 1));
//1、数组中的元素从小到大插入到pTmpArr数组中
int iIndex = 0, iLeft = iLow, iRight = iMid + 1;
while(iLeft <= iMid && iRight <= iHigh)
{
if(pArr[iLeft] < pArr[iRight])
{
pTmpArr[iIndex++] = pArr[iLeft++];
}
else
{
pTmpArr[iIndex++] = pArr[iRight++];
}
}
//2、如果数组中的元素没有排序完,那么就是剩下值较大的,直接插到数组后面
while(iLeft <= iMid)
{
pTmpArr[iIndex++] = pArr[iLeft++];
}
while(iRight <= iHigh)
{
pTmpArr[iIndex++] = pArr[iRight++];
}
//3、pTmpArr赋值给pArr
iIndex = 0;
for(int i = iLow; i <= iHigh; i++)
{
pArr[i] = pTmpArr[iIndex++];
}
free(pTmpArr);//如果使用new 则调用delete释放内存
}
void merge_sort(int *pArr, int iLow, int iHigh)
{
if(pArr == NULL)//对指针判空
{
return;
}
if(iLow >= iHigh)//递归结束条件
{
return;
}
//递归
int iMid = (iLow + iHigh) / 2;
merge_sort(pArr, iLow, iMid);
merge_sort(pArr, iMid + 1, iHigh);
merge(pArr, iLow, iMid, iHigh);
}
int main()
{
int arr[] = {9, 8 , 4, 7, 1, 2, 5, 3, 6};
merge_sort(arr, 0 , sizeof(arr)/sizeof(int) - 1);
for(int i = 0; i < sizeof(arr)/sizeof(int); i++)
{
printf("arr[%d]=%d\n", i, arr[i]);
}
return 0;
}
时间复杂度:假设有n个元素。也就是递归了lgn + 1次。调用merge的代价为cn。
其时间复杂长度T(n) = cn*(lgn + 1) = cnlgn + cn。当n足够大时,常量c和cn可以忽略不计。
则T(n) = O(nlgn)