华华给月月的礼物(二分法)

题目链接:F-华华给月月准备礼物_2021秋季算法入门班第三章习题:二分、三分、01 (nowcoder.com)

事先声明一下,这题本人的答案结果超时了,所以这里仅供读者当练习使用,文章如有不当之处恳请大佬们完善。

题目要求:输入正整数N和K,分别表示原本根数和希望根数,再自己输入各根木头的长度。

输出结果为裁剪后可获得的最大长度。

        思路:二分法——这题要在保证数目的情况下越长越好,所以为了避免出现长度太长 一些短根的木棍无法裁剪从而导致数量减少的情况,我们需要找到最短的那根木棍,再对这跟木棍的长度进行二分处理,经过不断二分找到符合最后根数的最大长度。

        首先,定义一个容器来储存原有的木棍

         然后再找到这些木棍中最短的那根木棍

         找到最短木棍后对他的长度进行二分处理,设定mid=(l+r)/2,如果得出的根数多了则说明短了,mid值右移 l=mid,反之相反。

                 现在是对mid值进行处理,确定改mid值下可以裁剪出多少根木棍出来。裁剪的根数=每根木棍的长度/mid,将所有根数做累加就是总根数

         接下来是完整的代码实现

#include<bits/stdc++.h>
using namespace std;
int N,k,n;
vector<int> L;
int work(int x)//确定能总共能切多少根 
{
	int gs=0;
	for(vector<int>::iterator it=L.begin();it!=L.end();it++)
	{
		gs=gs+(*it/x);//每根能切出的根数 
	}
	return gs;
}
int main()
{
	cin>>N>>k;//输入原本的根数N和希望获得的根数K 
	for(int i=0;i<N;i++)
	{
	 cin>>n ;
	 L.push_back(n);
	}
	int min;
	min=L[0];
	for(vector<int>::iterator it=L.begin();it!=L.end();it++)
	{
		if(min>*it)min=*it;//找到这些木棍中最短的那根 
	}
	int l=1,r=min;
	while(l+1!=r)
	{
		//对最短的那一根长度进行二分 
		int mid=l + ((r - l) >> 1);
		if(work(mid)<=k)r=mid;
		else l=mid;
	}
	cout<<l;
}

如先前所说这段代码是超时的,还恳请看到的大佬指出哪里可以优化

好的,这是一个比较简单的数学题,可以用矩阵快速幂求解。以下是 C++ 代码实现: ```c++ #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; const int MAXN = 2; const int MOD = 1e9 + 7; struct Matrix { LL m[MAXN][MAXN]; Matrix() { memset(m, 0, sizeof(m)); } Matrix operator * (const Matrix& b) const { Matrix c; for (int i = 0; i < MAXN; ++i) { for (int j = 0; j < MAXN; ++j) { for (int k = 0; k < MAXN; ++k) { c.m[i][j] = (c.m[i][j] + m[i][k] * b.m[k][j]) % MOD; } } } return c; } } base, res; Matrix qpow(Matrix a, int b) { Matrix ans; for (int i = 0; i < MAXN; ++i) { ans.m[i][i] = 1; } while (b) { if (b & 1) { ans = ans * a; } a = a * a; b >>= 1; } return ans; } LL gcd(LL a, LL b) { return b == 0 ? a : gcd(b, a % b); } int main() { LL a, b, n; cin >> a >> b >> n; if (n == 1) { cout << a << endl; } else if (n == 2) { cout << b << endl; } else { base.m[0][0] = base.m[0][1] = base.m[1][0] = 1; res = qpow(base, n - 2); LL ans = gcd(a * res.m[0][0] % MOD + b * res.m[1][0] % MOD, b * res.m[1][0] % MOD + b * res.m[1][1] % MOD); cout << ans << endl; } return 0; } ``` 在这段代码中,我们定义了一个 `Matrix` 结构体,它表示一个 $2\times2$ 的矩阵。其中重载了 `*` 运算符,实现了矩阵乘法。 然后,我们定义了一个矩阵快速幂函数 `qpow`,用于求解矩阵的 $n$ 次方。 最后,在 `main` 函数中,我们通过快速幂求出矩阵 $base$ 的 $n-2$ 次方,然后根据题目要求求出 $\gcd(F_N, F_{N+1})$ 并输出即可。 需要注意的是,当 $n=1$ 或 $n=2$ 时,直接输出 $a$ 或 $b$ 即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值