自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 收藏
  • 关注

转载 如何将EndNoteX6 / x7与Word2019关联

endnote x6/x7与Word2019进行关联,完美解决。管理员模式运行Cmd,一键搞定。

2024-04-26 18:07:42 260

原创 YOLOv5目标检测(1类)

环境配置尝试了两种方式:conda 下配置,较容易实现;python下pip 方式,从官网参考的命令没有与CUDA11.2匹配的选项,只能选择手动下载torch-1.9.1+cu111-cp39-cp39-win_amd64.whl,通过pip 命令安装过程中又自动更改为torch-1.8.0.;然后手动安装torchvision和torchaudio。

2022-08-23 18:16:21 3351 2

转载 学习率是什么,怎么调整

学习率的定义:Wikipedia给出Learning Rate的定义如下In machine learning and statistics, the learning rate is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of a loss function.在机器学习和统计学中,学习率是优化

2022-06-11 22:15:49 3018

原创 docker ps -a 什么也没有的原因

刚刚学习使用docker的小白,发现docker容器配置完毕后,一旦stop后,再通过docker ps -a 查看所有状态的容器,却没有最近启动过的容器了,经过查看资料,发现docker容器启动时带了-rm参数:参数: --rm 这表示停止后删除的意思所有stop后容器就消失了,无法通过docker restart ContainerID 启动回来。参考文献:Docker命令详解(run篇)_weixin_30951743的博客-CSDN博客......

2022-06-11 20:46:17 2370

原创 Linux下用Docker配置TensorFlow-GPU-jupyter环境

如题,下载安装好Docker环境(别人已做好,此处不说了),因想用GPU和jupyter开发,pull下来的tf环境为tensorflow/tensorflow:2.2.0-gpu-jupyter。看看机器上的docker 镜像: docker image ls查看一下,哪个docker 镜像启动了: docker ps可以发现f99(进程的前三位字母)处于活动状态,可以docker stop f99停止它。下面启动一个我想用的docker 镜像:docker run --g.

2022-05-14 15:49:12 632

转载 多分类评价指标:准确率、精确率、召回率、F1值

准确率、精确率、召回率、F1值定义:准确率(Accuracy):正确分类的样本个数占总样本个数, A = (TP + TN) / N精确率(Precision)(查准率):预测正确的正例数据占预测为正例数据的比例, P = TP / (TP + FP)召回率(Recall)(查全率):预测为正确的正例数据占实际为正例数据的比例, R = TP / (TP + FN)F1 值(F1 score): 调和平均值, F = 2 / (1/P + 1/R) = 2 * P...

2022-04-22 20:14:04 36581

原创 混淆矩阵不支持multilabel-indicator

from sklearn.metrics import confusion_matriximport seaborn as snsdef plot_cm(labels, predictions): cm = confusion_matrix(labels, predictions) plt.figure(figsize=(5,5)) sns.heatmap(cm, annot=True, fmt="d") plt.title('Confusion matri.

2022-04-17 20:47:16 3864 1

转载 作ROC曲线时遇上的问题

使用ROC曲线评估分类模型是非常通用的手段,但是,使用它的时候要注意两点:1、分类的类型。必须为数值型。2、只针对二分类问题。ROC曲线是根据一系列不同的二分类方式(分界值或决定阈),以真阳性率(灵敏度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线。传统的诊断试验评价方法有一个共同的特点,必须将试验结果分为两类,再进行统计分析。下面有个例子:import numpy as npfrom sklearn.metrics import roc_auc_scorey_scores=np.

2022-04-17 20:23:29 4524

转载 评价指标对比:准确率(accuracy)、精确率(Precision)、召回率(Recall)、IOU、Kappa系数

在人工智能算法中,算法实现,训练模型完成后,为了判定算法的好坏,需要对训练的模型进行评价,而评价的指标主要有以下几种:准确率(accuracy)、精确率(Precision)、召回率(Recall)、IOU、Kappa系数,下面分别进行讲解1 场景假设假如某班有女生20人,男生80人,共计100人.目标是找出所有女生,某人(分类器)挑选出50个人,其中20人是女生,另外还错误的把30个男生也当作女生挑选出来了。针对上述场景,现在换一种说法:总人数是100人,他把其中70人(20女+50男)判定正确

2022-04-16 09:55:25 7303 1

原创 keras中model.evaluate()函数使用从flow_from_directory中生成的测试集一直循环问题

model.evaluate()调用,测试集上检验模型的ACC和Loss

2022-04-14 12:50:07 6866

原创 深度学习环境搭建:Win10+TensorFlow2.7+CUDA11.2+cuDNN8.1.1

深度学习环境搭建:Win10+TensorFlow2.7+CUDA11.2+cuDNN8.1.1

2022-03-23 08:13:47 927

原创 Win10 环境nvidia CUDA GPU内存释放方法

GPU 内存释放

2022-03-22 20:10:02 3746

原创 pip install tensorflow 失败(win10-64环境+Python3.7)

pip install tensorflow 失败的解决

2022-03-20 15:39:28 4264

原创 Anaconda 使用 create 和 install 命令报错:Expecting property name enclosed in double quotes: line 1 column 4

Anaconda 使用 create 和 install 命令报错:Expecting property name enclosed in double quotes: line 1 column 40

2022-03-20 15:30:27 1878

原创 keras调用flow_from_directory()出现“Found 0 images belonging to 2 classes”问题

图像分类时,keras调用flow_from_directory()出现“Found 0 images belonging to 5 classes”问题。验证集从训练集分出的方法

2022-03-20 09:55:42 4383

原创 为什么CNN验证集的准确率(Accuracy)高于训练集的结果

验证集的准确率高于训练集结果,原因分析,dropout

2022-03-18 18:34:09 6006 2

原创 ImageDataGenerator生成器的flow_from_directory()的用法

flow_from_directory()参数

2022-03-18 10:43:04 1292

原创 VGG16模型参数

VGG16模型参数的初步用法

2022-03-18 09:54:31 3171

原创 jupyter notebook在Linux服务器后台保持运行

Linux终端的jupyter notebook 经常随着终端连接断开而结束,如何让jupyter在服务器后台保持运行呢?

2022-03-17 21:33:38 5136

原创 Tensorflow使用CPU, 不用GUP

tensorflow是否使用GPU问题,训练速度缓慢的情况检查原因,以及如何检查显存。

2022-03-07 21:01:20 1467

转载 分类指标准确率(Precision)和正确率(Accuracy)的区别

转自:http://www.cnblogs.com/fengfenggirl/p/classification_evaluate.html一、引言  分类算法有很多,不同分类算法又用很多不同的变种。不同的分类算法有不同的特定,在不同的数据集上表现的效果也不同,我们需要根据特定的任务进行算法的选择,如何选择分类,如何评价一个分类算法的好坏,前面关于决策树的介绍,我们主要用的正确率(accuracy)来评价分类算法。  正确率确实是一个很好很直观的评价指标,但是有时候正确率高并不能代表一个算法就好。

2021-12-11 11:52:29 3446

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除