题目描述:
假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
解题思路:
其实刚开始想的是这一看就是经典的斐波那契数列,直接无脑递归,但是后来提交之后发现想的太简单了,超出时间了。后来又想到可以用HashMap来减少,但是感觉有些麻烦。后来想到了动态规划,当时就很轻松的写了出来。
以下是简单递归,大家也可以看下代码,就当是熟悉递归了。
class Solution {
int a;
public int climbStairs(int n) {
a=math(n);
return a;
}
public int math(int n){
if(n<=3)
{
return n;
}
else{
return math(n-1)+math(n-2);
}
}
}
回到正题,这道题的难点就是如果单纯的递归势必会导致超出时间。所以我们考虑动态规划,通过for循环来记忆数值,从而实现减少时间的浪费。
实现代码:
class Solution {
int a1=1,a2=2,result;
public int climbStairs(int n) {
return math(n);
}
public int math(int n){
if(n==1)
{
return a1;
}
if(n==2)
{
return a2;
}
else{
for(int i=3;i<=n;i++)
{
result=a1+a2;
a1=a2;
a2=result;
}
return result;
}
}
}