- 博客(6)
- 收藏
- 关注
原创 卷积神经网络--卷积层(斯坦福李飞飞学习笔记)
kernel是二维的,也就是每一层的卷积核大小;slide:通常指的是卷积操作中滤波器(filter)在输入数据上的移动过程,涉及将一个小的窗口(这里是滤波器)在输入数据(如图像)的二维空间中滑动。image:32*32*3(图像大小32*32像素点,RGB图片总共3个颜色通道)对于图像分类任务,常见的卷积核(kernel)大小可以是3x3、5x5个像素点。filter:5*5*3(像素点大小5*5像素点,3个颜色通道)kernel:5*5(卷积核大小5*5像素点)
2024-08-08 16:40:25 334
原创 华为云设备接入(IoTDA)的数据转发方式
MQTT订阅接入适用于需要直接使用MQTT协议接入的场景,提供了灵活性和定制性,但需要开发者处理更多的底层实现。SDK方式适用于希望快速集成并且简化开发的场景,提供了高层次的抽象和便捷的接口,适合快速开发和部署应用程序。因此,MQTT订阅和SDK都是基于MQTT底层协议的,但是前者灵活性更大,后者是封装好的,需要根据需求进行选择。
2024-08-08 10:07:06 476
原创 ERROR: Could not build wheels for pycuda
发现报错未发现nvcc,可以通过输入以下代码,为系统提供CUDA所需要的工具和库,其中包括nvcc。pycuda安装到一半发现一直无法build wheels,提示说不是pip的问题。
2024-07-04 21:21:49 293
原创 Faster R-CNN主要步骤
Faster R-CNN(Faster Region Convolutional Neural Network)是一种用于目标检测的深度学习模型,它在精度和速度上取得了较好的平衡,是目标检测领域中较为经典和有效的模型之一。整个Faster R-CNN的流程就是通过这些步骤实现目标检测,其中RPN负责生成候选框,RoI Pooling用于对候选框进行特征提取,分类器和回归器用于对候选框进行分类和位置调整,最后通过NMS得到最终的检测结果。将RPN生成的候选框对应的特征区域池化成固定尺寸的特征图。
2024-05-23 10:16:41 478
原创 上下文无关文法与上下文有关文法的区别
思考了很久上下文无关文法的名称含义。其实重点区别就在于产生式左侧。上下文无关文法强调左侧只可以为一个非终结符,也就意味着读入字符串后,只要当前字符与产生式相匹配时,就可以进行替换;而上下文有关文法则需要满足产生式左侧的所有部分才可以,不能直接对单个非终结符进行替换。
2024-05-15 10:22:41 313
原创 解决YOLOV5跑模型所有不同类型图片的标签名称相同
YOLOV5跑自己的模型的时候设定了六个标签,但是最终结果所有的图片学习后识别的结果全部都是第一个标签driving。
2024-03-01 21:09:12 880 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人