用java实现汉诺塔问题

本文详细介绍了汉诺塔问题的递归求解思路,通过划分子问题并运用递归的方式,展示了如何将3根塔座上n个盘的移动过程分解为可操作的步骤。代码示例中,SFshiyan3类的move方法实现了从A到C的移动,并逐步演示了n=3的情况。
摘要由CSDN通过智能技术生成

目录

问题

汉诺塔问题递归求解思想

代码

结果

问题

设有A、B、C共3根塔座,在塔座A上堆叠n个金盘,每个盘大小不同,只允许小盘在大盘之上,最底层的盘最大。现在要求将A上的盘全都移到C上,在移的过程中要遵循以下原则: A:每次只能移动一个盘; B:圆盘可以插在A、B和C任一个塔座上; C:在任何时刻,大盘不能放在小盘的上面。

汉诺塔问题递归求解思想

我们把一个规模为n的hanoi问题:1到n号盘按照移动规则从A上借助B移到C上表示为H(A,B,C,n);原问题划分成如下子问题: (1)将1到n-1号盘按照移动规则从A上借助C移到B上H(A,C,B,n-1); (2)将n号盘从A上直接移到C上; (3)将1到n-1号盘按照移动规则从B上借助A移到C上H(B,A,C,n-1); 经过三个子问题求解,原问题的也即求解完成。

代码


package demo52;

public class SFshiyan3 {

	public static void move(int n,String a,String b,String c){
		// TODO Auto-generated method stub
    if(n==1){
    	System.out.println(a + "移动到" + c);
    }
    else{
    	move(n - 1, a , c , b);
    	System.out.println(a + "移动到" + c);
    	move(n - 1, b , a , c);
       }
	}
	public static void main(String[] args){
    move(3,"塔A","塔B","塔C");
	}

}

结果

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值