目录
问题
设有A、B、C共3根塔座,在塔座A上堆叠n个金盘,每个盘大小不同,只允许小盘在大盘之上,最底层的盘最大。现在要求将A上的盘全都移到C上,在移的过程中要遵循以下原则: A:每次只能移动一个盘; B:圆盘可以插在A、B和C任一个塔座上; C:在任何时刻,大盘不能放在小盘的上面。
汉诺塔问题递归求解思想
我们把一个规模为n的hanoi问题:1到n号盘按照移动规则从A上借助B移到C上表示为H(A,B,C,n);原问题划分成如下子问题: (1)将1到n-1号盘按照移动规则从A上借助C移到B上H(A,C,B,n-1); (2)将n号盘从A上直接移到C上; (3)将1到n-1号盘按照移动规则从B上借助A移到C上H(B,A,C,n-1); 经过三个子问题求解,原问题的也即求解完成。
代码
package demo52;
public class SFshiyan3 {
public static void move(int n,String a,String b,String c){
// TODO Auto-generated method stub
if(n==1){
System.out.println(a + "移动到" + c);
}
else{
move(n - 1, a , c , b);
System.out.println(a + "移动到" + c);
move(n - 1, b , a , c);
}
}
public static void main(String[] args){
move(3,"塔A","塔B","塔C");
}
}
结果