A:充分不必要 f ' (x0) >0 => f(x)在x0 的某邻域内单调增加
B: 正确,单看结论是不对的 ,但加上了条件在x0处有二阶导数 ,说明 f '' (x0) 存在 ----> f ' (x0)连续 ——> f ' (x0) >0 是在一个邻域内成立的,而不局限于x0这一点,故成立
C:反例 f(x) = x ^4 ----> f '' (0) = 0
D: 某点x0 的 f '' 推不出这个点所在领域的 f ''
由 举出反例
D选项条件改成3阶可导,即成立
A:充分不必要 f ' (x0) >0 => f(x)在x0 的某邻域内单调增加
B: 正确,单看结论是不对的 ,但加上了条件在x0处有二阶导数 ,说明 f '' (x0) 存在 ----> f ' (x0)连续 ——> f ' (x0) >0 是在一个邻域内成立的,而不局限于x0这一点,故成立
C:反例 f(x) = x ^4 ----> f '' (0) = 0
D: 某点x0 的 f '' 推不出这个点所在领域的 f ''
由 举出反例
D选项条件改成3阶可导,即成立