自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1160)
  • 收藏
  • 关注

原创 github上面的Create a new fork是什么意思

在 GitHub 中,(创建新的复刻 / 派生)是核心协作功能,本质是在你的 GitHub 账号下,创建目标仓库(通常是他人的开源仓库)的。

2025-12-29 17:17:38 291

原创 启用虚拟机平台和WSL就能用了?

勾选 “虚拟机平台” 和 “适用于 Linux 的 Windows 子系统(WSL)” 这两个功能后,仅完成了基础准备,,还需后续安装 Linux 发行版等操作。

2025-12-18 16:26:22 253

原创 【Docker】干货速存,新手必懂的实用技巧

Docker Hub上每个官方镜像都有详细使用说明,Redis、MongoDB这些热门镜像,复制文档里的命令,改改端口和存储路径就能用,比自己琢磨快10倍。其实完全没必要慌——Docker容错率超高,哪怕输错命令,顶多容器启动失败,删掉重来就行,不会影响主机系统。新手不用急着学复杂操作,先记住“镜像-容器”的关系:镜像就是应用的“安装包+配置”,容器是镜像跑起来的实例。做新媒体的宝子可以用它装轻量视频转换工具,做设计的能跑临时的素材处理软件——容器启动才占资源,关掉就释放,不会让电脑变卡顿。

2025-12-17 14:30:58 234

原创 【Docker入门】别再问“这玩意儿到底能干嘛”了!

有没有过这种崩溃时刻?本地写好的代码扔到服务器上就报错,对着屏幕喊“我这能跑啊”;或者换了台电脑重装环境,从上午折腾到下午,最后发现少装了个依赖包。要是有这种经历,那今天说的Docker,绝对是你的救星。先别被“容器技术”“虚拟化”这些词唬住,咱们用个生活化的比喻掰扯明白——Docker就像快递行业的“集装箱”。以前运货,衣服得用纸箱、水果得用泡沫箱、电器得用防震箱,到了目的地还得挨个拆箱整理,稍不注意就磕碰损坏。现在不管啥东西,都塞进标准化的集装箱里,吊车一吊就能装船装车,到地方直接卸下来就能用,不用管里

2025-12-17 14:27:36 309

原创 腾讯、阿里全系封禁豆包AI手机,字节这步棋子到底该如何走?

可以想象一下,最贴近生活的例子,比如早高峰开车或者走路时手拎两个包,不可拿手机的时候,朋友发微信问你到哪了,你不用手忙脚乱,直接说豆包,打开微信,帮我回复正在路上啦,大概晚10分钟,它就会自动打开微信完成发送。打开微博,有意思的是罗永浩的点评,他说技术革命是谁都拦不住的,字节迈出这第一步非常了不起,将来的人们会记住这历史性的一天。华为有自己的小艺助手和鸿蒙生态,苹果的iOS对第三方权限管控到了极致,小米也在强化小爱同学的生态闭环,他们都怕豆包抢了自己的生态话语权,毕竟谁都不想把手机的核心操作权限拱手让人。

2025-12-06 23:36:24 758

原创 Springboot分层架构是什么底层逻辑?

的伪实现,模拟各种场景(比如抛出异常),而不用启动真实的数据库。的代理实例,在代理里可以额外做很多事:事务管理、性能监控、权限校验。:所有"为什么这么做"的决策在这里。它只定义"需要什么数据",具体的SQL执行、结果映射由框架在运行时自动生成,你根本不需要写实现类。这意味着Controller只关心"你能提供什么方法"(接口约定),不关心"你怎么实现"。登记时,Spring会给每个类生成一个"代理身份证"(BeanDefinition)。:纯POJO,只负责描述"数据库表长什么样",字段怎么对应。

2025-12-05 20:11:02 594

原创 为什么 UserMapper 要继承 BaseMapper<User>?

(查询、新增、修改、删除),相当于给你一个 “现成的工具包”,不用自己写 SQL 或 XML。是 MyBatis-Plus 封装的 “基础 Mapper 接口”,里面已经提前写好了。不是 “继承 UserMapper”,而是 UserMapper。是 MyBatis-Plus(MP)框架提供的「父接口」,是你要操作的实体类(泛型指定操作对象)。,对应的是数据库中的。

2025-11-28 00:15:22 430

原创 新版idea项目报错Maven resources compiler: Maven project configuration required for module ‘wms‘ isn‘t avai

【代码】新版idea项目报错Maven resources compiler: Maven project configuration required for module ‘wms‘ isn‘t avai。

2025-11-25 22:01:41 448

原创 java和docker、nginx先学哪个更好

先学 Docker,可以让你更早地解决实际开发中的环境问题,简化开发流程,并紧跟行业技术潮流。当你的应用需要部署到服务器并对外提供服务时,再学习 Nginx 来进行反向代理和负载均衡,这时你会更能理解它的价值和必要性。记住,工具是为了解决问题而生的。哪个工具能解决你当前阶段最迫切的问题,哪个就应该优先学习。对于大部分 Java 初学者来说,这个工具就是 Docker。

2025-11-22 10:18:33 824

原创 从零学会 Excel 中的 “万能查找组合”—INDEX+MATCH 超简单教程

如果你用过 Excel,一定遇到过这样的场景:表格里有很多数据,想根据一个已知信息找到对应的内容。比如在通讯录里,知道 “姓名” 想找 “电话号码”;在成绩单里,知道 “学号” 想找 “分数”。Excel 里有很多查找工具,其中被称为 “万能查找公式”—— 它能解决 90% 以上的查找问题,比大家常听说的 VLOOKUP 更灵活、更强大。今天就从零开始,用最简单的语言教会你这个组合的用法。

2025-11-12 16:37:04 1107

原创 LOOKUP易错点!

LOOKUP仅适合 **“已升序排序的简单单行 / 单列数据”**,且以数字 / 日期查找为主(文本查找需严格排序且易出错)。未排序、频繁更新、包含文本(如content_id这类随机字符串);需要多条件查找、反向查找;强烈建议用替代,避免因排序问题导致结果错误。LOOKUP是 “简单场景的快捷工具”,但是 “通用且可靠的解决方案”。

2025-11-12 16:05:27 946

原创 向量数据库新手别踩坑!大模型应用必备,语义检索实操全搞定

很多刚接触大模型应用开发的朋友,可能都听过 “向量数据库” 这个词,但搞不懂它到底是干嘛的 —— 大模型不是能对话、能生成内容吗?为什么还要额外搭个向量数据库?甚至跟着教程搭好后,也不知道怎么把它和大模型连起来,最后成了 “摆设”?其实向量数据库不是 “高深技术”,而是大模型应用的 “记忆大脑”—— 大模型本身记不住外部知识(比如你公司的文档、行业数据),也处理不了 “相似性搜索”(比如从几百篇文档里找和问题相关的内容),而向量数据库正好能解决这两个问题。小索奇认为,现在做大模型应用(比如知识库问答、语义检

2025-10-28 19:05:43 638

原创 大模型本地部署别再折腾!新手避坑指南 + 显存优化技巧,7B 模型轻松跑通

其实大模型本地部署没那么复杂,但确实有不少 “隐形坑”,尤其是新手容易踩。小索奇认为,本地部署的核心不是 “追求大模型”,而是 “让模型适配你的硬件”—— 比如你只有 8GB 显存,非要硬上 13B 参数的模型,肯定会翻车。很多想玩大模型的朋友,是不是都有过这种经历:看着网上说 “本地部署 Llama 3 很简单”,跟着教程操作,结果要么 Python 环境报错,要么模型下载到一半断了,好不容易弄完,运行时又弹出 “显存不足”—— 折腾大半天,连模型的 “hello world” 都没跑出来?

2025-10-28 19:02:49 419

原创 新手学 A * 算法不踩坑!轻松搞定最短路径规划,原理步骤全讲透

另外,如果地图很大(比如 1000x1000 的网格),open 列表和 close 列表会变得很大,这时候可以用 “优先级队列”(比如 Java 的 PriorityQueue、Python 的 heapq)来优化 open 列表的查询速度,不然每次找 f 最小的节点都会很慢。首先得明确 A * 算法的目标:在一个 “网格地图”(比如游戏里的格子地图,每个格子要么是可走的路,要么是不可走的障碍物)里,从 “起点” 出发,找到一条到 “终点” 的 “最短路径”,而且要尽量少走冤枉路(也就是效率高)。

2025-10-28 19:00:20 823

原创 JavaScript 异步别再踩坑!async/await+Promise 轻松搞定,告别回调地狱

简单说,JS 是单线程的 —— 就像一个厨师一次只能做一道菜,遇到需要等的步骤(比如炖汤要等 30 分钟),总不能站在那儿等,得先去做别的菜,等汤好了再回来处理。异步就是让 JS “不等” 的能力,比如发起网络请求、设置定时器这些需要等的操作,JS 会先记下来,继续执行后面的代码,等前面的操作有结果了再回头处理。最后再提一个实用技巧:判断一个函数是不是异步,看它的返回值 —— 如果返回的是 Promise 对象,那它就是异步函数,调用的时候要么用.then,要么用 await。// 等请求成功再往下走。

2025-10-28 18:57:55 260

原创 前端布局别再熬夜调!CSS Flex 布局轻松搞定居中换行,新手 10 分钟上手

如果项目高度不一样,想让它们顶部对齐,用 flex-start;后来改成 Flex 布局,给容器加了 display: flex + flex-wrap: wrap + align-items: stretch,卡片不仅自动换行,还能自动拉伸到一样高,5 分钟就解决了之前半小时没搞定的问题。比如容器里有三个项目,想让前两个靠左,第三个靠右,不用调 justify-content,只要给第三个项目加 margin-left: auto,它就会自动跑到最右边,特别适合处理 “单个项目靠边” 的场景。

2025-10-28 18:55:32 319

原创 Java NPE 别再让你崩溃!Optional+StringUtils 实战技巧,从编码到调试全防住

小索奇建议,返回集合或对象时,尽量别返回 null,没数据就返回空集合(比如 Collections.emptyList ())或空对象(比如 new User ()),这样调用方不用每次都判空,代码也更简洁。如果遇到 NPE,别只看报错日志的最后一行,要往上翻 “Caused by” 部分,里面会显示具体是哪一行代码报的错。如果还是找不到,就用 IDE 的断点调试,在可能报 NPE 的代码前加个断点,运行到断点时,鼠标悬停在对象上,就能看到对象是不是 null 了 —— 这个方法亲测有效,比瞎猜快多了。

2025-10-28 18:53:04 361

原创 新手学线性回归零卡壳!Python+sklearn 实战教程,从数据处理到模型评估全搞定

可以用交叉验证,比如 K 折交叉验证,把数据分成 K 份,每次用 K-1 份训练,1 份测试,最后取 K 次结果的平均值,这样能更客观地评估模型性能,用 cross_val_score (lr, X, y, cv=5) 就能实现 5 折交叉验证。大家动手试的时候,要是遇到 “维度不匹配” 的报错,别慌,大概率是 X 的形状不对 ——sklearn 要求特征矩阵是二维的(n_samples, n_features),如果不小心传了一维数组,用 X.reshape (-1, 1) 转一下就行。

2025-10-28 18:50:39 293

原创 别再让员工熬通宵!数字员工搞定企业重复劳动,效率翻 3 倍还省钱

就拿电商行业的数字客服来说,它不仅能回答 “退货流程”“物流查询” 这种通用问题,还能根据店铺的售后规则,自动判断 “拆封商品能不能退”“超时未发货怎么赔付”,甚至能直接对接物流系统帮用户查快递轨迹。上次有个做跨境电商的朋友,跟风买了一款通用型数字客服,结果客服不懂跨境物流的清关规则,也不认识外文发票,客户问的问题答不上来,反而影响了用户体验。对了,要是你想了解某类行业的数字员工具体怎么用,或者想知道哪些服务商靠谱,也可以在评论区说,小索奇之后可以专门整理一期实战攻略,把亲测有效的方案分享给大家!

2025-10-28 18:48:18 239

原创 3 秒响应售后、离职率直降 50%!数字员工成企业降本增效新利器

有个做装修的老板跟我说,他花几万块买了个设计行业的数字员工,能自动对接客户需求、生成初步设计方案、计算材料用量和报价,以前他和设计师得花 3 天才能给客户的方案,现在半天就搞定,客户满意度高了,签单率都涨了 20%。以前的智能机器人就是 “问答机器”,只能识别固定关键词,你换个说法它就懵了 —— 比如你问 “没收到货能退吗”,它可能只认 “退货”“未收货”,稍微绕点弯就回复 “抱歉,我没理解”,体验特别差。但现在的数字员工,是基于大模型做的,还融合了行业专属的 Know-How。这确实是个值得聊的话题。

2025-10-26 17:14:30 299

原创 数字员工引爆职场效率革命!企业降本 50% 不犯错,这波红利别错过

就拿电商客服来说,得先把平台的售后规则、产品参数、物流政策梳理成清晰的 SOP,再把这些规则转化成大模型能理解的 prompt,还要设置好常见问题的应答逻辑,这样数字员工才能精准回复,而不是说些模棱两可的废话。说白了就是把大模型的语言理解能力、数字人的可视化交互,还有行业里的专业流程打包在一起,打造出的 “超级员工”—— 不用培训,上岗就能干活,还不用休息、不犯错,关键是能一直迭代升级。现在很多行业都在试水数字员工,除了电商、财务,还有教育行业的数字助教,能自动批改作业、解答学生的基础疑问;

2025-10-26 16:50:09 344

原创 数字员工落地别踩坑!90% 公司栽在这 3 个错上,附实战避坑技巧

他们老板听了行业分享,一拍大腿要搞 “AI 提效”,找了个供应商买了现成的系统,结果上线三天就崩了 —— 客服数字员工把客户问的 “退款流程” 答成了 “加盟政策”,运营用它生成的报表全是错数据,技术部天天加班擦屁股,最后还得把老员工拉回来救场。它不是万能的,但用对了确实能省不少事。而且数字员工是需要 “磨合” 的,上线初期肯定会有各种问题,比如回答不准确、流程不顺畅,这时候别直接放弃,让员工和它配合,慢慢优化 —— 比如客服遇到数字员工答不上来的问题,手动补充答案后,系统会自动学习,下次就能自己回答了。

2025-10-26 16:36:06 324

原创 数字员工上线 3 天狂降 15% 退货纠纷率!企业必看的高适配落地场景攻略

现在数字员工接手重复工作,我们刚好能专注做更有创造力的事 —— 比如优化服务流程、挖掘客户需求,这些都是 AI 暂时替代不了的,对吧?就拿财务报销来说,你直接把大模型丢进去让它处理报销单,它肯定懵 —— 不同发票的合规要求、公司的报销标准、跨部门审批流程,这些都得提前喂给它,相当于给数字员工做 “岗前培训”,不然它就是个空有一身本事的 “小白”。简单说就是,它不光能像 ChatGPT 那样聊天,还装了行业专属的知识库 —— 比如电商的售后规则、退款流程、产品参数,甚至客户的历史消费习惯,全都能精准调用。

2025-10-26 15:39:48 324

原创 学会提示词工程 3 个实战技巧,AI 精准输出不返工,工作效率直接翻倍

后来补充 “针对初创 APP,用户量 1 万以内,零预算,聚焦 3 个低成本策略”,它立马给出了 “社群运营、签到奖励、老用户邀请” 的具体方案,每个策略都有执行步骤,特别实用。举个例子,同样是让 AI 写短视频脚本,新手提示词是 “写个美食短视频脚本”,而专业提示词是 “你是美食博主,写一个 1 分钟家常菜短视频脚本,受众是上班族,核心卖点是 30 分钟搞定、低脂健康,开头要抓眼球(比如食材特写),中间加 1 个实用小技巧,结尾引导关注”。AI 的想象力太丰富,不给它设限制,它就容易跑偏。

2025-10-26 14:02:05 446

原创 别再被报表报销拖垮!数字员工让职场效率翻倍,这才是真 “职场搭子”

就拿财务报销来说,数字员工能自动识别发票真伪、提取金额和抬头,比对报销规则,不符合的直接标注原因,符合的自动录入系统提交审批,以前财务要花 3 天处理的月度报销,它半天就能搞定,还没差错。它不用你教话术,能自己分析客户咨询的核心需求 —— 客户问 “能不能加急发货”,它不仅能直接回复政策,还能联动仓库系统查库存,告诉客户 “当前库存充足,加急后 24 小时内发出”;现在很多大厂已经在大规模用数字员工了,比如阿里的智能客服 “阿里小蜜”,腾讯的财务数字员工,还有银行的智能柜员,其实都是数字员工的不同形态。

2025-10-26 13:12:35 179

原创 90% 人用线性回归都踩坑!4 大隐形陷阱 + 共线性 / 异常值解决技巧,机器学习入门必看

比如做房价预测时,同时把 “房屋建筑面积” 和 “房屋使用面积”(两者几乎成正相关)都作为特征,或者做用户消费预测时,把 “月均消费额” 和 “季度消费额”(季度 = 3× 月均)一起输入模型,这时候模型就会 “懵圈”—— 它分不清到底是哪个特征在真正影响预测结果,最后算出来的系数要么忽大忽小,要么符号都不对(比如理论上面积越大房价越高,结果系数是负数)。其实线性回归虽然是机器学习里的 “入门选手”,但想用好它,真得下点功夫 —— 既要懂数据处理,又要懂业务逻辑,还要能避开这些隐形的坑。

2025-10-26 12:58:48 479

原创 数字员工爆火!帮企业降本 40% 还提职场效率,财务 / 客服岗终于不用熬夜加班了

我认识的那个跨境电商老板,每周都会让团队把客户反馈的新问题整理出来,喂给数字员工学习,现在这员工处理问题的准确率越来越高,已经成了团队的 “顶梁柱”。简单说就是,把大模型的理解和生成能力、数字人的交互能力,再加上行业里的专业知识(比如财务的做账规则、HR 的招聘流程),三者打包整合,就能造出一个 “上岗即战力” 的数字员工。前阵子跟做互联网运营的朋友吃饭,她吐槽说以前每月底核对销售数据、整理报表,得熬两个通宵,现在公司上了个 “财务数字员工”,半天就搞定了,剩下的时间摸鱼喝奶茶,简直爽到飞起。

2025-10-26 12:56:12 458

原创 CSS 布局避坑!搞定浮动塌陷 + margin 塌陷,样式再也不跑偏

其实问题不在子元素,而在父元素 ——absolute 定位的元素,是相对于 “最近的已定位祖先元素”(也就是设置了 position:relative/absolute/fixed 的父元素)来定位的,如果父元素没设定位,它就会一直往上找,直到找到 body,所以才会跑到页面角落。比如你想做个两栏布局,给左侧 div 加了 float:left,右侧加了 float:right,写完一看,父盒子的背景色没了,高度直接变成 0,就像父盒子 “看不见” 里面的浮动元素一样。是布局跑偏,还是样式不兼容?

2025-10-16 19:03:45 448

原创 Java 新手避坑!搞定空指针 + 集合遍历问题,代码少崩 80% 还不踩暗病

更危险的是反过来,把实例方法当成静态方法调用,比如在静态方法里写 this.getName (),或者用类名调用实例方法,直接就会编译报错,新手还会纳闷 “我方法明明定义了,怎么调用不了?= null),要是怕嵌套太多,Java 8 以后有 Optional 类可以用,比如 Optional.ofNullable (user).map (User::getName).orElse ("未知用户"),这样就算 user 是 null,也不会崩,还能返回默认值。),那大概率该定义成静态方法,用类名调用;

2025-10-16 19:01:17 316

原创 别再白调参!特征工程抓对这 3 点,机器学习模型准确率直接涨 7%

不是所有模型都需要做特征缩放的,比如线性回归、SVM 这些模型,对特征尺度很敏感 —— 要是你把 “用户年龄”(0-100)和 “用户月消费额”(0-10000)直接喂进去,模型会更关注消费额这个大数值特征,忽略年龄。比如做外卖订单预测,你加了 “用户手机号前 3 位”“用户手机品牌” 这些和订单量没关系的特征,不仅会增加模型训练时间,还可能让模型学到无关的噪声 —— 比如刚好某品牌手机用户某天订单多,模型就以为 “用这个品牌手机的用户,每天订单都多”,这就是典型的 “过拟合”。

2025-10-16 18:58:53 318

原创 别再踩坑!电商大模型微调这么做,省 50% 客服成本还不翻车

所以小索奇发现啊,微调的第一步不是急着跑代码,而是把数据洗干净,没用的删掉、错的改过来,最好再人工标一遍关键信息,比如 “物流查询”“退货申请” 这类意图,不然模型根本抓不住重点。最后试了 0.0001 才刚好,loss 曲线稳步下降,输出也正常了 —— 所以真别迷信所谓的 “最优参数”,每个公司的数据不一样,得自己一点点试,就像做菜调味一样,多放少放都不行。我最近正在试,把过往的优秀文案喂进去,让模型生成新的,再人工改改,比从头写快多了 —— 你们有什么好的想法,也可以在评论区聊聊,咱们互相借鉴一下。

2025-10-16 18:56:30 378

原创 混淆特征类型,误用处理方法

很多新手遇到缺失值,要么直接删除含缺失值的样本(尤其是小数据集,删着删着数据量只剩一半),要么不管特征分布,全用 “均值” 或 “众数” 填充 —— 比如用 “用户收入” 的均值(5000 元)填充缺失值,但实际收入分布里有大量高薪人群(10 万元以上),均值被拉高,填充后低薪用户的缺失值会严重失真;这些高度相关的特征会导致 “多重共线性”—— 模型无法区分每个特征的独立作用,比如把 “平方米面积” 的影响重复算到 “平方英尺面积” 上,最后输出的特征权重完全失真,甚至让线性模型的系数正负颠倒。

2025-10-16 11:36:42 405

原创 二分查找新手总踩坑?边界条件 + 重复元素避坑技巧,轻松写对无 bug

比如找第一个 3,当 arr [mid] === target 时,不能直接返回 mid,而是要把 right 设为 mid-1,继续在左半区找,直到循环结束,最后再判断 left 处是否为目标(因为左半区可能还有更早的 3);第二个新手常忽略的坑,是 “没确认数组是否有序”。明明思路是对的,却要么陷入死循环,要么漏找目标元素,对着屏幕反复调试边界条件,最后发现只是多写了个等号或者少减了 1—— 作为算法入门的 “必学知识点”,二分查找看似简单,实则藏着不少新手容易踩的坑,很多人第一次写都得卡上半天。

2025-10-16 11:27:09 424

原创 AI 大模型输出总拉胯?提示词工程避坑技巧,新手也能精准控 AI

比如你让 AI 改一段代码,只贴了几行函数片段,没说这段代码是做什么用的(比如是电商的订单计算,还是金融的账单统计),也没说当前的问题是什么(比如是计算错误,还是运行报错)。比如你让 AI 分析用户行为数据,只说 “分析一下这些数据”,结果 AI 用大段文字描述趋势,没有表格、没有关键指标的量化结果,你想把结果放进报告里,还得自己重新整理成表格 —— 白浪费了 AI 的效率。这就像你让助理整理会议纪要,没说要 “分点 + 责任人 + 截止时间” 的格式,助理只给你一段流水账,你还得重新梳理。

2025-10-16 11:24:47 392

原创 机器学习模型评估总翻车?准确率误区 + 交叉验证避坑,3 招让模型上线不踩雷

那该怎么选评估指标?比如你用 1000 张猫的图片训练模型,模型把每张猫的像素细节都记住了,在训练集上识别准确率 100%,但遇到一张没见过的、姿势不同的猫,就可能认错,因为它没学会 “猫的通用特征”。比如你的训练集里,正样本占 90%,负样本占 10%,就算模型把所有样本都预测成正样本,准确率也能到 90%,但这显然是个没用的模型。如果你的数据集只有几百条,按 7:2:1 划分后,测试集可能只有几十条,用这么少的数据算出来的指标,随机性特别大 —— 比如这次测试集里恰好都是模型擅长识别的样本,指标就高;

2025-10-16 11:22:27 373

原创 警惕!AI 生成代码商用藏版权雷区,AIGC 风险拆解 + 避坑指南,开发者必看

你想想看,就像你用了别人的设计图改了改就说是自己的,一旦被发现,肯定要出问题,对吧?比如 AI 生成了一段登录接口代码,你可以调整参数命名、优化异常处理逻辑,再用单元测试验证功能,让代码融入更多 “人类创造性”,既降低侵权风险,也能避免 AI 可能犯的低级错误(比如忘记加密码加密)。比如用 Copilot 补全重复的接口代码,用 ChatGPT 写数据库操作的注释,甚至让 AI 生成简单的前端组件逻辑 —— 确实省时间,但你有没有想过:这些 AI 生成的内容,能直接拿去商用吗?

2025-10-16 11:18:53 511

原创 A * 算法新手总栽跟头?H 值计算 + 已访问节点避坑技巧,轻松搞定游戏寻路

举个例子:当前格子在 (2,3),终点在 (5,7),横向差是 3(5-2),纵向差是 4(7-3),曼哈顿距离就是 3+4=7,要是用欧几里得距离算就是√(3²+4²)=5,明显估低了,最后 A * 可能会优先选看似 “直线近” 但实际绕远的路 —— 这就像你以为直线穿公园能快,结果公园里全是栏杆,只能绕路,反而更慢。比如 A * 在找路的时候,会把待选的格子放进一个 “开放列表”,每次选 F 最小的格子后,要把它移到 “关闭列表” 里,标记为 “已经走过了,不用再看了”。的核心逻辑,其实一点都不复杂。

2025-10-16 11:16:27 399

原创 JS 异步总踩坑?setTimeout 延迟不准 + Promise 吞错 + async/await 漏 await,3 招搞定 90% 问题

比如你用 fetch 请求接口,写了 fetch (url).then (res => res.json ()).then (data => console.log (data)),看起来没毛病,但如果接口返回 404 或者 500 错误,控制台里既不报错,也看不到数据,你根本不知道问题出在哪儿。这是因为 Promise 如果发生错误,只有通过 catch 方法才能捕获到,要是没写 catch,错误就会被默默忽略,就像水倒进了没底的桶里,一点痕迹都没有。

2025-10-16 11:14:02 246

原创 Flex 布局总翻车?父容器设置 + 主轴交叉轴 + flex-wrap 避坑技巧,新手也能搞定 90% 页面布局

这时候别纳闷,问题出在父容器上 ——Flex 布局的核心是 “父容器控制子元素”,父容器没开启 Flex 模式(也就是没加 display: flex),子元素的 Flex 属性根本不会生效。这时候如果没加 flex-wrap: wrap,子元素不会自动换行,只会挤在一起,甚至超出父容器的范围,看起来乱糟糟的。或者明明加了 flex 属性,子元素却纹丝不动,对着屏幕反复检查语法,最后发现 “哦,父容器忘了加 display: flex”—— 这些 Flex 布局的坑,真的能把新手折腾到怀疑人生,对吧?

2025-10-16 11:11:48 341

原创 Java 基础总踩坑?空指针 + 字符串拼接 + 数组集合避坑技巧,新手少走 3 年弯路

第二个是用 Java 8 以后的 Optional 类,它就像给对象加了个 “保护套”,比如 Optional.ofNullable (user).map (User::getName).orElse ("默认姓名"),就算 user 是 null,也会返回默认值,不会直接崩掉。因为 String 是不可变的,每次用 + 号拼接,都会创建一个新的 String 对象,循环 1000 次就会创建 1000 个临时对象,不仅占内存,还拖慢速度。我是【即兴小索奇】,点击关注,后台回复 领取,获取更多相关资源。

2025-10-16 11:09:39 240

Java领域、switch函数详细解析,代码演示,作业帮助,问答咨询~

switch函数: switch 是在许多编程语言中都存在的一个条件语句,它允许根据一个表达式的值,选择性地执行不同的代码块。 下面是对 switch 函数的详细解释: switch (表达式) { case 值1: // 代码块1 break; case 值2: // 代码块2 break; // ... default: // 默认代码块 } 执行流程: switch 会评估括号内的表达式。 它会将表达式的值与各个 case 中的值进行比较。 如果匹配到某个 case,则会执行该 case 下的代码块,直到遇到 break 或者 switch 结束。 break 用于跳出 switch 语句,终止其后的代码执行。如果没有 break,会继续执行下一个 case,直到遇到 break 或者 switch 结束。 注意事项: switch 中的表达式必须是整数、字符或枚举类型。 每个 case 中的值必须是常量或字面量,不能是变量。 case 的值不能重复,代码示例..

2023-09-17

自己用到的PS+AI快捷键大全分享给大家

自己用到的PS+AI快捷键大全分享给大家

2023-04-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除