关于跑模型的一些使用总结

本文介绍了如何通过nvcc和nvidia-smi检查CUDA驱动版本,强调了cudnn的向下兼容性,并提到了在使用Torch时需确保版本匹配的重要性,以及显存清理在模型构建中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.nvcc -V 查看当前已安装的cuda driver的版本

2.nvidia-smi 查看硬件最大可支持的cuda driver版本

3.cudnn可以向下兼容

4.torch版本要和cuda和cudnn对应

5.搭建gemma模型步骤

用于清理显存,且多试几次起作用。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值