25考研数一高数第一轮复习(1):函数极限(上)

本文介绍了数学中的函数极限理论,特别是第一部分:函数的概念与特性、函数图像,涵盖了函数定义、反函数、复合函数、隐函数及其特性,以及基本初等函数如指数、对数和三角函数的图像分析。同时提及了分段函数的概念。
摘要由CSDN通过智能技术生成

今天开始正式进行高数的内容复习。

第一部分,函数极限,主要包括五块内容:函数的概念与特性、函数的图像、函数极限的概念和性质、计算、函数的连续性与间断

本文整理的是第一部分的前半部分,函数的概念与特性+函数的图像。

一、函数的概念与特性

(一)函数

xy是两个变量,D是一个给定的数集,若对于每一个x\in D,按照一定的法则f一个确定的值与之对应,则称yx的函数,记作y=f\left ( x\right ),称x自变量y因变量,称数集D为此函数的定义域,定义域一般由实际背景中的变量的具体意义或者函数对应法则的要求确定,称\left \{ f\left ( x \right )\\|x\in D \right \}值域。(每一个x值都最多对应一个y值)

 (二)反函数

设函数y=f\left ( x \right )的定义域为D,值域为R,如果对于每一个y\in R,必存在唯一的x\in D使得y=f\left ( x \right )成立,则由此定义了一个新的函数x=\varphi \left ( y \right ),这个函数称为函数y=f\left ( x \right )的反函数,一般记作x=f^{-1}\left ( y \right ),它的定义域为R,值域为D,相对于反函数来说,原来的函数也称为直接函数

严格单调函数必有反函数,有反函数的函数不一定是单调函数

若把x=f^{-1}\left ( y \right )y=f\left ( x \right )的图像画在同一坐标系中,它们完全重合。只有把反函数的xy互换后,他们的图像才关于 对称,事实上这也是字母xy互换的结果。(直接函数与反函数在同一个坐标轴中图像的各个点是一样的也就是说图像是完全重合的,但是实际上,他们的值域和定义域刚好相反,为了区别,将反函数的xy互换,变成标准的y=f\left ( x \right )形式,这使得他们关于y=x对称

       口诀:铅垂直线定单多,水平直线定反直。(铅垂直线与函数最多一个交点,那么该函数是单值函数(一般认为考研期间的函数默认都是单值函数,即符合函数的定义);水平直线与函数最多一个交点,那么该函数有反函数)。

(三)复合函数

设函数y=f\left ( u \right )的定义域为D_{1},函数u=g\left ( x \right )D上有定义,且g\left ( D \right )\subset D_{1},则由y=f\left [ g\left ( x \right ) \right ]\left ( x\in D \right )确定的函数称为由函数u=g\left ( x \right )和函数y=f\left ( u \right )构成 的复合函数,他的定义域为Du称为中间变量。

(四)隐函数 

设方程F\left ( x,y \right )=0,若当x取某区间内的任一值时,总有满足该方程的唯一的值y存在,则称方程F\left ( x,y \right )=0在上述区间内确定了一个隐函数y=y\left ( x \right )

简单的说,就是相较于y=f\left ( x \right )这种形式,更难以看出xy之间关系的函数。比如y=x+5是显函数,而y+x-5=0是隐函数,显然它们实际上是同一个式子,这里的隐函数也可以转换为显函数,但是有些函数因为xy关系较为复杂,只能用f\left ( x,y \right )=0的隐函数形式表示。

(五) 函数的四种特性

1、有界性

f\left ( x \right )的定义域为D,数集I\subset D,如果存在某个正数M,使对任一x\in I,有|f\left ( x \right )|\leqslant M,则称f\left ( x \right )I上有界;如果这样的M不存在,则称f\left ( x \right )I上无界。

例如, 存在y=-My=M,使-M\leqslant f\left ( x \right )\leqslant M 成立,则f\left ( x \right )有界。当然,讨论有界无界的前提是指定区间I

2、单调性

设f的定义域为D,区间I,如果对于区间I上任意两点x_{1}x_{2},当x_{1}<x_{2}时,恒有f\left ( x_{1} \right )<f\left ( x_{2} \right ),则称在区间上单调增加。反之则是单调减少。

3、奇偶性

 设f\left ( x \right )的定义域D关于原点对称(若x\in D,则-x\in D),如果对于任一x\in D,恒有f\left ( -x \right )= f\left ( x \right ),则称f\left ( x \right )为偶函数,如果对于任一x\in D,恒有f\left ( -x \right )= -f\left ( x \right ),则称f\left ( x \right )为奇函数。

偶函数的图像关于y轴对称,奇函数的图像关于x轴对称。 

4、周期性

 设f\left ( x \right )的定义域为D,如果存在一个正数T,使得对于任一x\in D,有x\pm T\in D,且f\left ( x+T \right )=f\left ( x \right ),则称f\left ( x \right )周期函数T称为f\left ( x \right )周期

二、函数的图像

(一)基本初等函数与初等函数

基本初等函数包括:常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数

1、常数函数 

y=AA为常数。(如图1.1)

其图像为平行于x轴的水平直线。

图1.1

2、幂函数

y=x^{\mu }\mu是实数)。(如图1.2)

y=x^{\mu }的定义域和值域取决于\mu的值,当x> 0时,y=x^{\mu }都有定义。

x> 0时,y=x,y=\sqrt{x},y=\sqrt[3]{x},y=lnx具有相同的单调性且与y=\frac{1}{x}具有相反的单调性。

图1.2

3、指数函数

y=a^{x}(a> 0,a\neq 1)。(如图1.3)

定义域:\left ( \displaystyle -\infty ,+\infty \right ),值域:\left ( 0,+\infty \right )

a>1时,y=a^{x}(a> 0,a\neq 1)单调增加;当a<1时,y=a^{x}(a> 0,a\neq 1)单调减少。

常用指数函数:y=e^{x} (如图1.4)

图1.3

图1.4

4、对数函数

y= \log _{a}x(a>0,a\neq 1)。(如图1.5)

y=a^{x}成反函数

定义域为: \left ( 0,+\infty \right ),值域为:\left ( \displaystyle -\infty ,+\infty \right )

a>1时,y= \log _{a}x单调增加;当0<a<1时,y= \log _{a}x单调减少

常见特殊对数函数值:log_{a}1=0log_{a}a=1lne=1

图1.5

5、三角函数

正弦函数:y=\sin x。(如图1.6)

余弦函数:y=\cos x。(如图1.7)

定义域:\left ( \displaystyle -\infty ,+\infty \right ),值域:\left [ -1,1 \right ]

正弦函数是奇函数,余弦函数是偶函数,x\in \left ( -\infty ,+\infty \right )

y=\sin xy=\cos x都是以2\pi最小正周期的周期函数,x\in \left ( -\infty ,+\infty \right )

|\sin x|\leq 1,|\cos x|\leq 1

\sin ^{2}\alpha +\cos ^{2}\alpha =1

图1.6

图1.7

正切函数:y=\tan x。(如图1.8)

余切函数:y=\cot x。(如图1.9)

正割函数:y=\sec x。(如图2.0)

余割函数:y=\csc x。(如图2.1)

 y=\tan x=\frac{\sin x}{\cos x}

 1+\tan ^{2}\alpha = \sec ^{2}\alpha ;1+\cot ^{2}\alpha = \csc ^{2}\alpha

\sec x=\frac{1}{\cos x}\csc x=\frac{1}{\sin x}

图1.8

图1.9

图2.0

图2.1

6、反三角函数

反正弦函数:y=\arcsin x(如图2.2)

反余弦函数:y=\arccos x(如图2.3)

y=\arcsin xy=\sin x\left ( -\frac{\pi }{2} \leqslant x\leqslant \frac{\pi }{2}\right )的反函数,y=\arccos xy=\cos x\left ( 0\leqslant x\leqslant \pi \right )的反函数

y=\arcsin x的主值区间为\left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]y=\arccos x的主值区间为\left [ 0,\pi \right ]

 反三角函数的恒等式有:

\sin \left ( \arcsin x \right )=x,x\in \left [ -1,1 \right ];

\sin \left ( \arccos x \right )=\sqrt{1-x^{2}},x\in \left [ -1,1 \right ];

\cos \left ( \arccos x \right )=x,x\in \left [ -1,1 \right ];

\cos \left ( \arcsin x \right )=\sqrt{1-x^{2}},x\in \left [ -1,1 \right ];

图2.2

图2.3

反正切函数:y=\arctan x(如图2.4)

反余切函数:y=\textrm{arccot} x(如图2.5)

y=\arctan xy=\tan x\left ( -\frac{\pi }{2} \leqslant x\leqslant \frac{\pi }{2}\right )的反函数,y=\textrm{arccot} xy=\cot x\left ( 0\leqslant x\leqslant \pi \right )的反函数

 反正余切函数的定义域为:\left ( \displaystyle -\infty ,+\infty \right )y=\arctan x的值域为\left ( -\frac{\pi }{2} ,\frac{\pi }{2}\right )y=\textrm{arccot} x的值域为\left ( 0,\pi \right )

单调性:y=\arctan x单调增加,y=\textrm{arccot} x单调减少

奇偶性:y=\arctan x为奇函数

\arctan x+\textrm{arccot}x=\frac{\pi }{2}\left ( -\infty ,+\infty \right )

图2.4

图2.5

7、初等函数

由基本初等函数经过有限次的四则运算,以及有限次的复合步骤所构成的并且可以由一个式子所表示的函数称为初等函数

初等函数的定义域可以是一个区间,也可以是几个区间的并集,甚至可以是一些孤立的点 

(二)分段函数

在自变量的不同变化范围中,对应法则用不同的式子来表示的函数称为分段函数。分段函数是用几个式子来表示一个(不是几个)函数,它不是初等函数。其典型形式如下:

f=\left\{\begin{matrix} \varphi _{1}\left ( x \right ),x> x_{0},\\ 0,x= x_{0}, \\ \varphi _{2}\left ( x \right ),x= x_{0}, \end{matrix}\right. 

  • 52
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值