// 压缩图片
compress(img) {
let canvas = document.createElement("canvas");
let ctx = canvas.getContext("2d");
//瓦片canvas
let tCanvas = document.createElement("canvas");
let tctx = tCanvas.getContext("2d");
// let initSize = img.src.length;
let width = img.width;
let height = img.height;
//如果图片大于四百万像素,计算压缩比并将大小压至400万以下
let ratio;
if ((ratio = (width * height) / 4000000) > 1) {
// console.log("大于400万像素");
ratio = Math.sqrt(ratio);
width /= ratio;
height /= ratio;
} else {
ratio = 1;
}
canvas.width = width;
canvas.height = height;
// 铺底色
ctx.fillStyle = "#fff";
ctx.fillRect(0, 0, canvas.width, canvas.height);
//如果图片像素大于100万则使用瓦片绘制
let count;
if ((count = (width * height) / 1000000) > 1) {
// console.log("超过100W像素");
count = ~~(Math.sqrt(count) + 1); //计算要分成多少块瓦片
// 计算每块瓦片的宽和高
let nw = ~~(width / count);
let nh = ~~(height / count);
tCanvas.width = nw;
tCanvas.height = nh;
for (let i = 0; i < count; i++) {
for (let j = 0; j < count; j++) {
tctx.drawImage(
img,
i * nw * ratio,
j * nh * ratio,
nw * ratio,
nh * ratio,
0,
0,
nw,
nh
);
ctx.drawImage(tCanvas, i * nw, j * nh, nw, nh);
}
}
} else {
ctx.drawImage(img, 0, 0, width, height);
}
//进行最小压缩
let ndata = canvas.toDataURL("image/jpeg", 0.3);
tCanvas.width = tCanvas.height = canvas.width = canvas.height = 0;
return ndata;
},
// 上传图片
afterRead(file) {
// 此时可以自行将文件上传至服务器
console.log(file);
if (file.file.size > 500 * 1024) {
console.log('123');
let img = new Image()
img.src = file.content;
img.onload = () => {
file.content = this.compress(img);
file.file = this.dataURLtoFile(
file.content,
file.file.name
)
console.log(file);
// 上传图片接口
this.uploadImg(file)
}
} else {
console.log('456');
this.uploadImg(file)
}
},
// 将base64转换为file文件
dataURLtoFile(dataurl, filename) {
let arr = dataurl.split(",");
let mime = arr[0].match(/:(.*?);/)[1];
let bstr = atob(arr[1]);
let n = bstr.length;
let u8arr = new Uint8Array(n);
while (n--) {
u8arr[n] = bstr.charCodeAt(n);
}
return new File([u8arr], filename, {
type: mime
});
},
前端处理图片压缩上传
最新推荐文章于 2024-03-15 19:20:37 发布
文章介绍了如何使用JavaScript和HTML5的CanvasAPI对图片进行压缩,包括处理大尺寸图片、使用瓦片绘制和最小压缩。同时提及了图片上传逻辑,以及Base64数据转换为File对象的方法。
摘要由CSDN通过智能技术生成