- 博客(8)
- 收藏
- 关注
原创 nvidia-smi 相关操作
nvidia-smi:可以查看显卡的型号、驱动版本、显卡目前温度、显存已使用及剩余、正使用显卡的所有进程及占用显存等信息;可以查看指定显卡的使用情况,如查看0号卡的情况:nvidia-smi -i 0;如果存在某一块显卡损坏,使用nvidia-smi会报错。
2024-04-17 21:28:59 323 1
原创 k折交叉验证和epoch的循环关系!
k折交叉验证是数据量太少的时候防止过拟合的一种手段,kf.split()内部每次都会按照设定的k值,等分不同的训练集和验证集,其中,for train, val in kf.split(data):,这行代码中每次都会选择不同的k-1训练集,剩下的作为验证集。所以二者的关系应该是epoch嵌套在k折中进行训练和验证,目的是每折都会经过预定次数的epoch训练、验证,得到一折的结果,然后k折的结果进行平均。而epoch是训练轮数,是为了通过epoch叠加,实现参数迭代,损失下降。
2024-04-17 20:22:13 344 1
原创 正确理解PE
可能的猜想是,embedding之后的向量属于高维向量,position encoding后的与之同维,也是高维,二者在高维空间内分别占据部分子空间,并相互正交。Transformer使用MHSA(Multi-Head Self-Attention),从而避免使用了RNN的递归方法,加快了训练时间,同时,它可以捕获句子中的长依赖关系,能够应对更长的输入。简而言之,Trans架构需要对输入的Tokens添加位置编码,以辅助模型学习不同patch之间相对位置关系,比如词序、图像分割的patch。
2024-03-12 19:16:45 898
原创 多模态步骤
3. **共享表示学习:** 在这个阶段,模型学习一个共享的表示,能够捕捉不同模态之间的共同特征。4. **模态间解缠:** 在共享表示学习之后,进行模态间的解缠操作。5. **任务特定层:** 如果任务是特定的(如分类、生成等),添加任务特定的层或模块。6. **模型训练:** 使用预处理过的多模态数据集,以及共享表示和解缠操作,对整个模型进行训练。7. **模型评估:** 在独立的测试集上评估模型的性能。9. **应用:** 一旦满足预期的性能要求,可以将训练好的多模态深度学习模型应用于实际场景中。
2023-11-22 12:15:29 225 1
原创 多模态入门
模态(Modality)是指一种语言学概念,用于描述说话人对某种语言表达的态度或语气。在语言学中,常见的模态包括实现可能性、必然性、推测性、建议性等。在英语中,常见的情态动词包括can、may、must、should、will等,它们可以表示说话人对某种语言表达的不同态度或语气,例如可能性、必要性、建议性、应该性等。模态也可以通过语气、修辞、语调等方式来表达。多模态是指不同的数据形式输入,可以是完全不同类型的数据,比如CT和MRI;也可以是不同参数下的CT,或者不同时期的图像,定义较为宽泛,重点理解把握。
2023-11-22 10:50:21 233 1
原创 配置pytorch框架
这是磨人的小妖精教程网上都有,推荐土堆的b站视频,很详细这里就说一下需要注意的问题:1.显卡型号确定算力2.显卡驱动无脑升到最新3.cuda低于显卡对应的cuda版本4.下载采用镜像网站,要不你会体会到来自地狱的外网的速度哦,还有一点很重要,注意Python和pytorch版本的兼容性问题,网上有资料可以查。
2023-02-13 22:29:38 57
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人