L1-002 打印沙漏
分数 20
本题要求你写个程序把给定的符号打印成沙漏的形状。例如给定17个“*”,要求按下列格式打印
*****
***
*
***
*****
所谓“沙漏形状”,是指每行输出奇数个符号;各行符号中心对齐;相邻两行符号数差2;符号数先从大到小顺序递减到1,再从小到大顺序递增;首尾符号数相等。
给定任意N个符号,不一定能正好组成一个沙漏。要求打印出的沙漏能用掉尽可能多的符号。
输入格式:
输入在一行给出1个正整数N(≤1000)和一个符号,中间以空格分隔。
输出格式:
首先打印出由给定符号组成的最大的沙漏形状,最后在一行中输出剩下没用掉的符号数。
输入样例:
19 *
输出样例:
*****
***
*
***
*****
2
首先,我们观察沙漏的形状:
只会有 1,3,5,7,9...的行数,按照an=2n+1的规律来,分别对应颗数:1,7,17,31,49...
所以我们可以用给定的颗数按照在哪个数和哪个数之间来确定总共的行数
其次,我们观察上半部分的规律:
是一个倒着放的按照数列an=2n-1的规律来放的,把最中心的只有一颗星的第三行视为整个上半部分的第一行,倒着类推:第一行 1颗* 第二行 三颗*** 第三行 五颗*****
而空格的规律就简单:正着数 第一行 0 第二行 1 第三行 2
而下半部分则是和上半部分反过来,而且是按照中心的的那一颗星对称的,我们思路跳转一下,把下半部分反过来的行数,按照中心对称对到上半部分去,就会得到一样的形状
这样,只要加个判定,还会缩减代码,减少运行时间和空间
if( k > (m-1)/2 ){ //判断是在上半部分还是下半部分,放在一个循环里做
k = (m-1)/2 - (k-(m-1)/2);
}
源代码
#include <stdio.h>
int main ()
{
int n , m=1 , sum=1 , i , j , k;
char ch;
scanf("%d %c", &n , &ch);
while(1){
if(sum <= n && (sum+2*(m+2)) > n) //确定所用的符号个数
{
break;
}else{
m += 2; //m是总行数
sum += 2*m;
}
}
for(i=0 ; i<m ; i++){
k = i;
if( k > (m-1)/2 ){ //判断是在上半部分还是下半部分,放在一个循环里做
k = (m-1)/2 - (k-(m-1)/2);
}
for( j=k ; j>0 ; j-- ) printf(" ");
for( j=0 ; j<(m-k*2) ; j++ ) printf("%c",ch);
printf("\n");
}
printf("%d", n-sum );
return 0;
}