分岔图中的暗线(Dark Lines)

分岔图中的暗线(混沌带中的暗线)本质上为状态点的聚集区域。从函数图形上看,这些位置处的乘子应较为平缓;从乘子的数值上看,这些位置处的状态点甚至达到超稳定。

一、一维单峰映射中的暗线

映射函数:x_{n+1}=1-{\mu}{x_n}^2

上述映射函数对应的分岔图为:

图1:单峰映射中的分岔图

根据此映射函数的性质,可依次写出各暗线的方程:

P_0=0;\\ P_1=1-{\mu}{P_0}^2=1;\\ P_2=1-{\mu}{P_1}^2=1-{\mu};\\ P_3=1-{\mu}{P_2}^2=1-{\mu}+2{\mu}^2-{\mu}^3;\\ ......

依次类推,可绘制出分岔图中的多条暗线,如图所示:

图2:单峰映射分岔图中的暗线(P1-P8)

图2实现的程序为(Matlab):

clc
clear
%绘制分岔图
y=zeros(2,50000);
m=1;
for d=0.0:0.001:2
    x=0.618;
    for k=1:500
        if k>200
           y(1,m)=d;y(2,m)=x;
           m=m+1;
        end
        x=1-d*x*x;
    end
end
figure
plot(y(1,1:m-1),y(2,1:m-1),'.b')
%绘制暗线图
hold on
lines=10;%绘制前10条
P=zeros(lines,50000);
for k=2:1:lines
    m=1;
    for k1=0.0:0.001:2
        P(k,m)=1-k1*P(k-1,m)*P(k-1,m);
        m=m+1;
    end
    plot(0.0:0.001:2,P(k,1:m-1),'r','linewidth',2)
end

 二、二维海农映射中的暗线

映射函数:

x_{n+1}=a-{x_n}^2-0.3y_n;\\ y_{n+1}=x_n;

二维海农映射中的暗线:

二维中的暗线目前仍在探索,欢迎感兴趣的朋友通过邮件与我联系讨论:3348964572@qq.com

我会第一时间回复。

如果上述内容对您有用,请为我点赞,留下您的足迹。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值