分岔图中的暗线(混沌带中的暗线)本质上为状态点的聚集区域。从函数图形上看,这些位置处的乘子应较为平缓;从乘子的数值上看,这些位置处的状态点甚至达到超稳定。
一、一维单峰映射中的暗线
映射函数:
上述映射函数对应的分岔图为:
图1:单峰映射中的分岔图
根据此映射函数的性质,可依次写出各暗线的方程:
依次类推,可绘制出分岔图中的多条暗线,如图所示:
图2:单峰映射分岔图中的暗线(P1-P8)
图2实现的程序为(Matlab):
clc
clear
%绘制分岔图
y=zeros(2,50000);
m=1;
for d=0.0:0.001:2
x=0.618;
for k=1:500
if k>200
y(1,m)=d;y(2,m)=x;
m=m+1;
end
x=1-d*x*x;
end
end
figure
plot(y(1,1:m-1),y(2,1:m-1),'.b')
%绘制暗线图
hold on
lines=10;%绘制前10条
P=zeros(lines,50000);
for k=2:1:lines
m=1;
for k1=0.0:0.001:2
P(k,m)=1-k1*P(k-1,m)*P(k-1,m);
m=m+1;
end
plot(0.0:0.001:2,P(k,1:m-1),'r','linewidth',2)
end
二、二维海农映射中的暗线
映射函数:
二维海农映射中的暗线:
二维中的暗线目前仍在探索,欢迎感兴趣的朋友通过邮件与我联系讨论:3348964572@qq.com
我会第一时间回复。
如果上述内容对您有用,请为我点赞,留下您的足迹。