算法之二分

二分法

理解与总结

当题目给定一个区间,而且能够确定答案就在区间的内,这个时候就适合二分法求解答案,查找效率很高的一个算法,二分法有整数二分和实数二分,实数二分比较简单,印象中高中数学就学过了,下面主要讲整数二分,整数二分要区分答案是在答案区间的左端点还是右端点,如果是左端点就先缩小左边,反之先缩小右边,条件判断时先考虑相等情况,如果是寻找右端点需要在二分时加一再除以二(确保mid 总是偏向区间的右侧)。

例题

题目

789. 数的范围

思路

题目给定了一个区间[1,10000],让我们求询问数的起始位置和终点,可以又图看出,找起点可以看成时二分查找左端点,终点可以看成二分查找右端点。

代码

public class Main {
    public static void main(String[] args) throws IOException {
        BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));
        Scanner scan = new Scanner(System.in);
        /*数组长度*/
        int n = scan.nextInt();
        int[] arr1 = new int[n];
        /*询问个数*/
        int q = scan.nextInt();
        int[] arr2 = new int[q];
        for (int i = 0; i < n; i++) {
            arr1[i] = scan.nextInt();
        }
        for (int i = 0; i < q; i++) {
            arr2[i] = scan.nextInt();
        }
        for (int i = 0; i < q; i++) {
            int l = 0;
            int r = n - 1;
            int num = arr2[i];
            /*寻找左端点*/
            while (l < r) {
                int m = l + r >> 1;
                if (arr1[m] >= num) r = m;
                else l = m + 1;
            }

            if (num == arr1[l]) {
                out.write(l+" ");
                /*寻找右端点*/
                r = n - 1;
                while (l < r) {
                    int m = l + r + 1 >> 1;
                    if (arr1[m] <= num) l = m;
                    else r = m -1;
                }
                if (num == arr1[l]) {
                    out.write(r + "\n");
                }
            } else out.write("-1 -1" + "\n");
        }
        out.flush();
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值