机器学习 - 随机森林 Random Forest(学习笔记)

随机森林是一种集成学习方法,通过构造多棵决策树并结合随机样本选择和特征选择来提高泛化能力,降低过拟合风险。每棵树独立生长,最终通过投票或平均决定分类或回归结果。随机森林对特征重要性有评估方法,包括包外估计和不纯度减少。Bootstraping和Bagging策略用于样本选择,GBDT则是基于残差减少的决策树Boosting算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

构造出多棵决策树,每个决策树单独执行。每次执行对样本要随机选择,选一定比例的数据(如60%),因为数据样本可能有异常值。对特征选择也随机选择,因为有的特征表达效果不好。最后将结果统一。分类:求众数;回归:求均值。解决决策树泛化能力弱的特点。(可以理解成三个臭皮匠顶过诸葛亮)

每棵树都尽最大程度的生长,并且没有剪枝过程。
一开始我们提到的随机森林中的“随机”就是指的这里的两个随机性。两个随机性的引入对随机森林的分类性能至关重要。由于它们的引入,使得随机森林不容易陷入过拟合,并且具有很好得抗噪能力(比如:对缺省值不敏感)。

总的来说就是随机选择样本数,随机选取特征,随机选择分类器,建立多颗这样的决策树,然后通过这几课决策树来投票,决定数据属于哪一类(投票机制有一票否决制、少数服从多数、加权多数)

随机森林与Bagging相比,在其样本扰动的基础上,增加了属性扰动,泛化性能通过个体学习器之间的差异 度的增加而进一步提升。

随机森林算法可以对特征的重要性进行选择,如通过包外估计法和基于不纯度减少的方法(哪个特征对不纯度减少的贡献越大,那么哪个特征就越重要)

减小特征选择个数m,树的相关性和分类能力也会相应的降低;增大m,两者也会随之增大。所以关键问题是如何选择最优的m(或者是范围),这也是随机森林唯一的一个参数。

Bootstraping:有放回采样

Bagging:有放回采样n个样本一共建立分类器

Bagging是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值