代码随想录算法训练营第五十天-动态规划11|123.买卖股票的最佳时机III, 188.买卖股票的最佳时机IV

K次操作股票,需要用二维数组,第二维来表示操作的状态,第一维表示第i个物品,也就是股票的价格。

思路
这道题目相对 121.买卖股票的最佳时机 (opens new window)和 122.买卖股票的最佳时机II (opens new window)难了不少。

关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。

接来下我用动态规划五部曲详细分析一下:

确定dp数组以及下标的含义
一天一共就有五个状态,

没有操作 (其实我们也可以不设置这个状态)
第一次持有股票
第一次不持有股票
第二次持有股票
第二次不持有股票
dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。

例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。

确定递推公式
达到dp[i][1]状态,有两个具体操作:

操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

dp数组如何初始化
第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

举例推导dp数组
以输入[1,2,3,4,5]为例

大家可以看到红色框为最后两次卖出的状态。

现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出手里所剩的钱一定是最多的。

所以最终最大利润是dp[4][4]

 这个是2次操作的思路,k次操作是把二维数组的第二维状态扩展,具体直接看代码会更容易理解。

123. 买卖股票的最佳时机 III

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
     随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:

输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。   
     注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。   
     因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:

输入:prices = [7,6,4,3,1] 
输出:0 
解释:在这个情况下, 没有交易完成, 所以最大利润为 0。
示例 4:

输入:prices = [1]
输出:0
提示:

1 <= prices.length <= 105
0 <= prices[i] <= 105
 

class Solution {
    public int maxProfit(int[] prices) {
        int len = prices.length;
        // 边界判断, 题目中 length >= 1, 所以可省去
        if (prices.length == 0) return 0;
 
        /*
         * 定义 5 种状态:
         * 0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出
         */
        int[][] dp = new int[len][5];
        dp[0][1] = -prices[0];
        // 初始化第二次买入的状态是确保 最后结果是最多两次买卖的最大利润
        dp[0][3] = -prices[0];
 
        for (int i = 1; i < len; i++) {
            dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);
            dp[i][2] = Math.max(dp[i - 1][2], dp[i][1] + prices[i]);
            dp[i][3] = Math.max(dp[i - 1][3], dp[i][2] - prices[i]);
            dp[i][4] = Math.max(dp[i - 1][4], dp[i][3] + prices[i]);
        }
 
        return dp[len - 1][4];
    }
    
}

188. 买卖股票的最佳时机 IV

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:

输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
     随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
提示:

0 <= k <= 100
0 <= prices.length <= 1000
0 <= prices[i] <= 1000

class Solution {
    public int maxProfit(int k, int[] prices) {
        int len = prices.length;
        int[][] dp = new int[len][2 * k];
        for(int i = 0; i < 2 * k; i += 2){
            dp[0][i] = -prices[0];
        }
        for(int i = 1; i < len; i++){          
            for(int j = 0; j < 2 * k; j += 2){
                if(j == 0){
                    //第一次持有
                    dp[i][0] = Math.max(dp[i - 1][0], - prices[i]);
                    //第1次卖出
                    dp[i][1] = Math.max(dp[i - 1][1], dp[i][0] + prices[i]);
                }else{
                    //后续的持有和卖出
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1] - prices[i]);
                    dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i][j] + prices[i]);
                }                
            }
        }
        return dp[len - 1][2 * k - 1];
 
        //可以多定义一种状态,把0作为没有操作,可以把状态的代码简写,也就是下面这一种
 
        // int len = prices.length;
        // int[][] dp = new int[len][2 * k + 1];
        // for(int i = 1; i < 2 * k; i += 2){
        //     dp[0][i] = -prices[0];
        // }
        // for(int i = 1; i < len; i++){          
        //     for(int j = 1; j <= 2 * k; j += 2){                
        //         //后续的持有和卖出
        //         dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1] - prices[i]);
        //         dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i][j] + prices[i]);                            
        //     }
        // }
        // return dp[len - 1][2 * k];
 
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值