647. 回文子串
题目链接:力扣
题目要求:
给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。回文字符串 是正着读和倒过来读一样的字符串。子字符串 是字符串中的由连续字符组成的一个序列。具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
示例 1:
输入:s = "abc"
输出:3
解释:三个回文子串: "a", "b", "c"
1 <= s.length <= 1000
s 由小写英文字母组成
总结:
dp[i][j]代表开始为i,结尾为j的字符串是否为回文串,如果遍历的i,j位置的两个字符相等,且i和j差为0或为1,则直接为回文串;否则还要看中间的串是否回文,中间串也回文串,则以i开始j结尾的串也回文串,循环顺序,根据递推公式二维数组都是由左下角递推过来的,故从下到上,从左到右顺序,且j不得小于i。
class Solution {
public int countSubstrings(String s) {
//dp[i][j]代表开始为i,结尾为j的字符串是否为回文串
int len = s.length();
boolean[][] dp = new boolean[len][len];
//初始化,全部都先默认为flase
//循环顺序,根据递推公式二维数组都是由左下角递推过来的,故从下到上,从左到右顺序,且j不得小于i
//记录回文串个数
int count = 0;
for(int i = len-1;i >= 0;i--){
for(int j = i;j < len;j++){
//如果计i,j位置的字符相等,且i和j差为0或为1,则直接为回文串;否则还要看中间的串是否回文
if(s.charAt(i) == s.charAt(j)){
if(j - i <= 1){
count++;
dp[i][j] = true;
}else if(dp[i+1][j-1]){
//中间串也回文串,则以i开始j结尾的串也回文串
count++;
dp[i][j] = true;
}
}else{
dp[i][j] = false;
}
}
}
return count;
}
}
516. 最长回文子序列
题目链接:力扣
题目要求:
给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。
示例 1:
输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。
1 <= s.length <= 1000
s 仅由小写英文字母组成
总结:
dp[i][j]代表以i起始,j结尾的字符串的最长回文子序列的长度,如果i,j两个字符相等则,需要在其内部字符串的最长回文子序列长度的基础上加2,如果是j比i大1的情况,dp[i+1][j-1]为0,公式求出的正好为2,符合这种情况,如果两个字符不相等,则删除一个字符,就加一个字符,来看最长回文子序列的长度,选出大的一种情况赋值给dp[i][j]。
class Solution {
public int longestPalindromeSubseq(String s) {
//dp[i][j]代表以i起始,j结尾的字符串的最长回文子序列的长度
int len = s.length();
int[][] dp = new int[len][len];
//初始化
for(int i = 0;i < len;i++) dp[i][i] = 1;
//遍历顺序,根据递推公式,可以得出需要从下到上,从左到右
for(int i = len - 1;i >= 0;i--){
for(int j = i + 1;j < len;j++){
if(s.charAt(i) == s.charAt(j)){
dp[i][j] = dp[i+1][j-1] + 2;
}else{
dp[i][j] = Math.max(dp[i+1][j],dp[i][j-1]);
}
}
}
return dp[0][len-1];
}
}