问题描述:
子集和问题的一个实例为〈S,t〉。其中,S={ x1, x2,…, xn}是一个正整数的集合,c是一个正整数。子集和问题判定是否存在S的一个子集S1,使得子集S1和等于c。本问题不要求输出所有解。
思路:
求解该问题需要搜索整个解空间树,设解向量x=(x1,x2,…,xn),本问题不要求输出所有解,所以一旦搜索到叶子结点(即 i = n + 1)就结束搜索。如果相应的子集和为W,则输出 x 解向量。搜索到第 i (1 <= i <= n)层的某个结点时用 tw 表示选取的整数和, rw 表示余下的整数和,rw = w[j] ( j 从i + 1到 n )
(1)约束函数:检查当前整数 w[i] 加入子集和是否超过 W ,若超过,则不能选择该路径。用于左孩子结点剪枝。
(2)限界函数:一个结点满足 tw + rw < W,即即使选择剩余的所有整数,也不可能找到一个解。用于右孩子剪枝。
按照如下代码,一般都会先考虑树的左边,如果左边全部都不符合条件的话,回溯返回,手动剪枝,然后接着遍历右子树。
Code:
#include<bits/stdc++.h>
using namespace std;
const int N = 1e3 + 10;
int a[N];//用于存储S的正整数集合
bool x[N];//用于记录各分支的结果情况
int tw = 0,rw = 0;//tw:当前整数和,rw:余下的整数和
bool flag = false;//记录是否有解
int n,c;
void backtrack(int i){
if(i > n || flag == true) return;//已经遍历完所有结点或者已经产生解
if(tw == c){//找到了一条路径
for(int j = 0; j < i; j ++ )
if(x[j] == 1)//打印这条路径上的每个元素(用x[] = 1标记)
cout << a[j] << " ";
flag = true;
return ;
}
if(tw + a[i] <= c){//小于 c ,进入左子树,剪枝
x[i] = 1;
tw = tw + a[i];
rw = rw - a[i];
backtrack(i + 1);
tw = tw - a[i];
rw = rw + a[i];
}
if(tw + rw - a[i] >= c){//进入右子树,剪枝
x[i] = 0;
rw = rw - a[i];
backtrack(i + 1);
rw = rw + a[i];
}
return ;
}
int main(){
cin >> n >> c;
for(int i = 0; i < n; i ++ ) {
cin >> a[i];
rw = rw + a[i];
}
backtrack(0);//从第 0 个结点开始递归遍历
if(flag == false)
cout << "No Solution!\n";
return 0;
}
代码运行截图: