深度 | LangChain最新调研,半数企业已在用AI Agent,你还在观望吗?

编者按:本文基于LangChain最新发布的《State of AI Agents》报告,解读当前AI智能代理的发展现状、应用场景与关键挑战。报告调研了超过1300名专业人士,覆盖科技、金融、医疗等多个行业。

AI Agent不再是科技圈的专属玩具。从流程自动化到数据分析,从代码开发到客户服务,越来越多企业将其视为关键生产力工具。然而,现实是否如表面看起来那般乐观?

LangChain报告显示,AI Agent的落地速度远超预期——超过一半(51%)的企业已在生产环境中部署了此类代理。对于中型企业(100-2000人),这一比例更是高达63%
更重要的是,78% 的企业正积极开发Agent,计划尽快部署。这意味着,Agent技术正从"PPT 概念"阶段快速迈向实践落地。

AI代理:一个逐渐明确的定义

LangChain将AI代理定义为一种利用大语言模型决定应用程序控制流的系统。类似自动驾驶汽车的自动化等级,AI代理也有其能力光谱,从简单的任务执行到多代理协作。

过去一年,各类代理框架迅速流行,例如结合推理与行动的ReAct、多代理编排器,以及LangChain自家的LangGraph,为开发者提供更高的可控性。

代理部署:一半企业已行动,更多计划在路上

调查显示,51%的受访企业已将AI代理投入生产,其中规模在100至2000人的中型企业(63%)是最积极的使用者。此外,有78%的受访者计划在不久的将来部署AI代理,显示出市场对这一技术的强烈兴趣。然而,落地过程中的挑战依然存在。

无论是科技企业还是非科技企业,对AI代理的兴趣几乎一致:90%的非科技企业正在或计划将代理用于生产,与科技公司(89%)的比例不相上下。

企业是否已在生产环境中使用代理

AI代理的热门应用场景

根据调研数据,目前最受欢迎的三大应用场景为:

    1. 研究与总结(58%):用于文献综述、数据分析等耗时工作。
    1. 个人生产力助手(53.5%):协助处理日程安排、任务管理等日常事务。
    1. 客户服务(45.8%):应用于智能问答、故障排查、加速响应等服务场景。

这些场景充分体现了AI代理解放人类生产力、优化知识工作的潜力。

AI代理的主要应用场景

挑战与风险:控制是核心议题

尽管AI代理潜力巨大,但风险控制始终是部署的重中之重。企业普遍采取了以下措施以确保代理行为可控:

  • 跟踪与可观测性工具:实时监测代理行为;

  • 权限控制:绝大多数团队仅允许“只读”操作,或在人类批准后执行写入和删除任务;

  • 离线评估(39.8%):优先通过离线测试避免生产环境的风险。

代理权限类型

值得一提的是,技术公司更倾向于采用多重控制措施(51%同时使用两种以上方法),而非技术企业这一比例仅为39%。这表明技术公司在构建可靠代理方面更为领先。

AI代理的主要障碍:性能质量优先于成本

性能不稳定是团队面临的最大挑战,特别是在确保回复的准确性与上下文适配性方面。调研显示,小型企业(<100人)中,45.8%认为性能质量是主要限制,这远高于成本(22.4%)等其他因素。

此外,技术知识的不足开发时间投入也是阻碍部署的主要难题。许多团队正在努力学习如何有效实施和测试AI代理,甚至希望通过像LangChain Academy这样的培训资源提升技能。

部署AI代理的主要障碍

最受欢迎的Agent应用

已落地的AI Agent产品中,以下三款备受瞩目:

    1. Cursor:支持智能代码补全、调试和解析的 AI 驱动代码编辑器;
    1. Replit:加速软件开发流程,助力快速环境配置和应用部署;
    1. Perplexity:基于网络搜索的智能问答引擎,提供附带来源引用的复杂问题解答。

最受欢迎的Agent应用

未来展望:从“炒作”到“实用”

AI代理不再是实验室里的概念产品。从帮助开发者加速代码编写的Cursor,到重塑搜索体验的Perplexity,这些产品正在实际生产环境中解决问题,展示了代理的无限可能。

但想真正实现AI代理的大规模应用,企业需要在“控制与自主性”间找到平衡。对于想抢占AI未来先机的企业而言,可靠性与可控性将成为核心竞争力

随着更强大的模型出现和开源代理的持续发展,AI代理的边界仍在不断拓展。我们正站在智能化自动化的下一波浪潮之上,未来已来,只是还未均匀分布。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值