被DeepSeek逼疯的乙方…

有不少销售说

最近聊起DeepSeek大模型时

发现客户并不像刚开始那么狂热

而是相当冷静!

图片

客户几个灵魂拷问下来

大部分销售都招架不住

聊到最后

客户还会撂下一句“狠话”

图片

那么,客户在部署DeepSeek时

到底会遇到哪些具体问题呢?

他们又会有怎样的灵魂拷问?

客户灵魂拷问1

“我们不是不想用大模型,而是它和我们的业务流程结合得太差了!现在的DeepSeek,顶多只是个外挂,没法真正融入我们的生产系统。

图片

所以,这位客户的可能需要

【AI流程快速编排】解决方案

客户灵魂拷问2

我们的业务涉及多个部门、多个系统,不是一个AI Agent(智能体)能解决的。

好比之前需要ERP、OA、财务等应用,分散性布局,现在问题是一个企业中存在多个Agent,有的负责报表、有的负责销售...

图片

所以,这位客户的可能需要

【多Agent协同调度】解决方案

客户灵魂拷问3

我们业务每天在产生大量数据,但这些数据到底该怎么喂给大模型吃?

我们现在不想要一个堆积如山的数据湖,而想要一个AI喜欢吃的数据食堂。

图片

所以,这位客户的可能需要

【数据蒸馏】解决方案

客户灵魂拷问4

聊过很多厂商,他们介绍给我们的方案感觉是“用大炮打蚊子”,通用大模型也太重了,我们并不需要每次都跑一个几十GB的模型。

我们需要的是针对具体业务场景优化的小模型,用最少的算力,解决最关键的问题。

图片

所以,这位客户的可能需要

【模型蒸馏】or【专属小模型训练】方案

客户灵魂拷问5

数据不能交给外部,不能放在公有云,必须在私有环境里运行,推理和训练过程也不能“黑箱操作”,怎么弄?

图片

所以,这位客户的可能需要

【私有化部署】+【国产化】方案

图片

这些问题一个个抛出来

分分钟能把推销大模型的乙方逼疯

说一千,道一万

客户要的不只是一个强大的模型

而是一整套能支撑AI落地的全家桶方案

图片

能Hold住以上所有需求的方案,哪里有?

嘿嘿,找对人就能搞定

这就是神州数码推出的重磅AI平台

图片

【神州问学平台】

专为企业部署大模型挑战而生

它是一站式企业级AI应用构建平台

涵盖模型、数据、应用、算力四层工具体系

图片

图片

接下来

我们对照上面客户的“拷问”

讲讲神州问学平台如何帮助客户

解决部署DeepSeek时的几大顾虑

一、【数据蒸馏与生成】方案

这解决了客户的疑问

没有数据,又想搞点行业专属数据怎么办?

或者有私房数据,但乱七八糟,想变成标准化数据,好喂给AI吃。

神州问学能帮助用户

从DeepSeek等大模型中

按照指定的特征需求,生成数据集

图片

不仅能从DeepSeek中生成

神州问学还提供了其他几个超强大模型

供用户来调用并“生成”数据集

从无到有、快速生成

图片

通过神州问学的数据集生成功能

用户可以快速基于模型生成数据

用于模型训练、微调、验证等等

医疗诊断数据集、融资数据集、生产故障数据集、农情遥感数据集、自动驾驶行车数据集...

图片

同时,如果客户还有大量私有数据

还可以通过数据蒸馏功能

对原始数据进行提纯,提取出

规模更小、信息密度更高的蒸馏数据

从多到少,从粗到精

图片

就这样

用户手里就有了两种数据集

根据特征需求用模型生成的生成数据

基于自由海量数据蒸馏得到的蒸馏数据

用这些数据就可以定制自己的模型

图片

二、【模型定制】方案

这解决了客户的疑问

模型太大,算力要求高,业务适配度太低,没法用

需要懂行小模型,用最少算力,解决最关键的问题

确实,如果部署DeepSeek满血模型

需要高额的算力投入,动辄大几百万

神州问学提供“模型定制”方案

可以选择各种尺寸模型(满血版or蒸馏版)

进行「后训练」或者「微调」

图片

在这个过程中

客户可以结合自己的私房数据

对初始“母模型”进行多轮后训练或微调

最终定制一款既继承原模型能力

又能适配低算力推理部署环境

还深度匹配企业需求的专属模型

图片

三、提供【AI流程快速编排】工具

这解决了客户的疑问

AI只是“外挂”

大模型怎么才能真正融入业务流程?

神州问学帮助企业“拆解”传统应用

比如ERP、OA、财务、销售等

将传统业务逻辑细化、模块化

并转换为 API 接口

使其能够被AI Agent直接调用和执行

图片

也可以通过「AI流程编排工具」

将分散拆解的业务模块,加入AI后

组合成新的业务流程和新应用

图片

本质是将数据资产重新编排、流程再造

这就是神州数码提倡的「Al for Process」

企业流程一定会从传统的、静态的操作模式

转变为以AI为核心的动态编排与协作系统

将knowhow(经验)变成process(流程)

图片

四、【多Agent协同调度】方案

这解决了客户的疑问

那么如何让多个Agent协同工作?

避免“各自为战”,而不是单打独斗!

神州问学提供的多Agent调度方案

有4大功能

① AI流程编排:让每个Agent各司其职

比如,客户问:我的货啥时候发货?

可能会存在5个Agent

先把他们都揪出来派活

客服Agent、订单查询Agent、库存管理Agent、物流调度Agent、智能决策Agent

图片

②智能任务分工:避免重复劳动或推诿

合适的AI做合适的事

你别抢活,也别甩锅

图片

③多Agent通信协议:Agent互相沟通

AI们可以互相召唤

不用老板手动指派

图片

④兼容老系统:轻松对接企业ERP等

快速对接企业已有的业务系统

ERP、OA、BI等等

图片

五、【全栈自主】方案

有私有化部署需求的用户

可能会有国产化需求,希望全栈自主

神州鲲泰推理服务器搭载昇腾硬件

全面支持DeepSeek模型私有化部署

图片

这样,用户就可以完全在本地

基于神州鲲泰服务器

部署DeepSeek大模型和神州问学平台

踏上全栈自主的AI应用落地之旅

图片

图片

DeepSeek这类当红大模型落地

不能只靠模型能力,还需要配套能力

而神州问学无疑是这种配套能力的极佳载体

客户们的一轮轮拷问,全部给出满意解

图片

当然,在神州问学强大配套能力的背后

是神州数码完整的生态支持能力

(数据生态、算力生态、算法生态、工具生态、应用生态...)

图片

图片

DeepSeek的火爆

给大模型行业落地带来了新契机

也带来了更多新挑战

选择神州问学,携手神州数码

在数智化转型路上,一路过关斩将!

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值