最近这个月谷歌已经火力全开,以惊人的速度推出一系列 AI 新品,从小型语言模型 Gemma 3,到强大的 Gemini 图像编辑功能,再到具身智能模型 Gemini Robotics..... 各种新品层出不穷。当地时间 3 月 25 日,谷歌又推出了其新一代 AI 模型 Gemini 2.5,再次向世界展示了其技术实力。这是继三个月前发布 Gemini 2.0 之后,谷歌再次升级其旗舰 AI 模型系列。谷歌 DeepMind 首席技术官 Koray Kavukcuoglu 在官方博客中宣称,Gemini 2.5 是该公司“迄今为止最智能的 AI 模型”,代表着谷歌在“让 AI 更智能、更具推理能力”目标上的又一重大进展。
据谷歌官方表示,Gemini 2.5 被定位为一款“思考型模型”,将推理能力直接嵌入了模型中,它能够在回答问题前先进行思考分析,从而提供更准确、更深入的回答。与前代产品相比,谷歌通过显著增强基础模型和改进后期训练,使 Gemini 2.5 达到了全新的性能水平。Kavukcuoglu 解释道:“我们正在将这些思考能力直接构建到所有模型中,使它们能够处理更复杂的问题,并支持更强大、更具上下文感知的智能体。”
首个发布的 2.5 系列模型是 Gemini 2.5 Pro 实验版,它具备强大的多模态理解能力,可以处理来自文本、音频、图像、视频和大型数据集的输入,甚至能够理解整个代码仓库的结构和内容。这款模型目前提供 100 万 token 的上下文窗口,谷歌计划很快将其扩展到 200 万 token,这是目前 Gemini 实验模型中最大的上下文窗口之一,使其能够处理和理解更长、更复杂的内容。
在各项基准测试中,Gemini 2.5 Pro 的表现相当出色。它在大模型竞技场 LMArena 排行榜(这一指标衡量的是人类对模型回答的偏好度)上以显著优势位居第一。
在不使用工具辅助的情况下,Gemini 2.5 Pro 在“人类最终考试”(Humanity's Last Exam)数据集上获得了 18.8% 的成绩,创下业界新高。此外,该模型在 GPQA 和 AIME 2025 等数学和科学基准测试中也全面领先,超越了 Claude 3.7、Grok3、GPT4.5、DeepSeek-R1 等一众顶尖模型。
图丨基准测试结果(来源:谷歌)
在各大社交平台,已经有许多用户进行了实测,表现确实足够出色。例如,从经典的小球碰撞测试来看,Gemini 2.5 Pro 与 o1 Pro 都表现不错。相对来说,Gemini 碰撞物理效果要更好,不过在最后却丢失了一颗小球(何况 Gemini 还是免费的)。
还有用户用一行简单的提示(“用纯 three.js,不下载任何资源或纹理,创建一个可以在浏览器中运行的飞机飞行模拟器游戏”),就成功让 Gemini 2.5 Pro 创建了一个完整的 3D 飞行模拟器,包括飞机控制、速度和高度显示等功能。
谷歌高级研究员 Jeff Dean 也在社交媒体上分享了 Gemini 2.5 Pro 的实际应用案例,特别强调了这款模型在编码和数学交叉领域的出色表现。他提到,仅通过“p5js to explore a Mandelbrot set”(使用 p5js 探索曼德布洛特集)的简单提示,Gemini 2.5 Pro 就能编写出完整的可视化代码。
此外,前不久在社交媒体爆火的用 Claude 生成 3D 对象的能力,Gemini 2.5 Pro 也成功实现了。有一位用户使用 Gemini 2.5 Pro 将一个简单的手绘生日蛋糕草图转换为 3D 可打印对象,并最终成功打印出实物。
图丨相关推文(来源:X)
根据谷歌博客展示,Gemini 2.5 Pro 在创建视觉上吸引人的 Web 应用程序和智能体代码应用方面表现尤为出色。例如,它能够利用其推理能力,从一行提示中生成完整的视频游戏可执行代码。在专业代码评估基准 SWE-Bench Verified 上,使用自定义智能体设置,Gemini 2.5 Pro 获得了 63.8% 的得分,超越了除 Claude 3.7 之外的其他所有模型。
Gemini 2.5 Pro 目前已在 Google AI Studio 和 Gemini 应用程序中向 Gemini Advanced 用户提供,并将很快登陆 Vertex AI 平台。Google AI Studio 产品经理 Logan Kilpatrick 表示,Gemini 2.5 Pro 是“第一个具有更高速率限制和计费功能的实验模型”,谷歌计划在未来几周内公布 Gemini 2.5 系列模型的定价。
短短一个月内,谷歌已经数次证明了他们的实力。而在今年,谷歌计划单独投资 750 亿美元用于 AI 开发,这 750 亿美元还将诞生多少成果,值得我们保持期待。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓