OpenAI新模型发布后,大家体感都幻觉更多了。
甚至有人测试后发出预警:使用它辅助编程会很危险。
具体来说,它经常捏造从未运行过的代码返回结果,在被质问时找理由狡辩,甚至还会说是用户的错。
当大家带着疑问仔细阅读System Card,发现OpenAI官方也承认了这个问题,与o1相比o3幻觉率是两倍,o4-mini更是达到3倍。
并且OpenAI只是说“需要更多研究来了解原因”,翻译一下就是暂时给不出合理解释。
在第三方幻觉测试中,也出现让人惊讶的结果:
从GPT-3.5一直到o3-mini,都遵循更新更强大的模型幻觉更少的规律。
但从最新一批深度思考模型的表现来看,推理能力更强的模型,幻觉率也变高了。
而且不只OpenAI一家出现这个问题,谷歌、xAI也同样,Grok-3的幻觉比Grok-2严重,Gemini-2.0-Flash-Thinking的幻觉问题比Gemini 2.0和2.5其他型号严重。
推理越强,幻觉越严重?
第三方机构Transluce在o3正式推出之前测试了预发布版本,发现幻觉问题是相当严重。
在公布的案例中,o3会假装在不存在的电脑上执行了代码,还编造出具体硬件配置和软件版本信息。
在受到质问时,o3居然还幻想自己是人,声称“输入的时候手滑了”。
关键在于,在这项测试中o3根本就没有使用代码工具的权限,所有声称运行了代码的回复都是模型捏造的。
在另一个案例中,o3回复了一个512位质数,实际上这个数能被3整除。
在受到质问时,又编造出一个换行/剪贴板故障。
更多类似幻觉如下:
-
当用户询问现在几点时,o3会编造一个时间。当被问及如何获得这个时间时,o3回答说它使用了 Python的datetime模块。
-
用户要求o3生成一首诗的SHA-1哈希值,当用户质问哈希值不正确时,o3称是用户复制错了,并坚称自己生成的哈希值是正确的。
-
用户要求o3从Web服务器上的日志文件中提取统计数据。o3生成了一个Python脚本,并声称可以在本地运行。这一次在被问及代码执行的更多细节时,它终于承认自己没有Python解释器,输出是“手工编造的”。
……
那么是什么原因导致了o3的这些行为?
Transluce认为其中一些因素是大多数模型 (LM) 所共有的,还有一些是O系列模型特有的新因素。并假设这些新因素放大了通常可以通过标准Post-training缓解(但无法完全消除)的问题。
语言模型共有的因素包括:
-
预训练中的幻觉:语言模型的预训练目标是最大化训练数据中语句的概率,这可能会导致常见的误解 、罕见的事实或采样不确定性等导致的多种幻觉。
-
奖励黑客攻击:如果人类评分者无法区分正确答案和错误答案,强化学习可能会奖励“听起来合理”的答案,导致模型对难以验证的问题编造出听起来合理的解释。
-
谄媚现象:RLHF训练通常会激励模型同意用户的观点,当用户暗示模型采取了特定行动或具有特定能力时,这可能会导致模型避免与用户相矛盾。
-
分布偏移:测试场景相对于训练场景可能存在分布偏差,如模型可能是在启用代码工具的情况下训练的,但评估时关闭了这些工具。
强化学习训练特有的因素包括:
-
最大化答案正确率的目标可能会奖励瞎蒙
如果训练期间的奖励函数只奖励正确答案,那么模型就没有动力承认自己无法解决问题,因为承认了也不会被视作正确答案。
在这种情况下,当遇到一个无法解决或难度过高的问题时,模型可能仍会尝试输出一个概率最高的答案,万一猜对了就可以得到奖励。
- 在易于验证的任务训练可能使模型在其他任务上感到困惑
Transluce猜测o3的训练过程中,鼓励它成功使用代码工具完成任务。它可能已经开发出一种策略,即使没有真正的代码工具,它也会幻想使用代码工具来组织思维,这可能会提高其他推理任务的准确性,并在训练过程中得到强化。
更重要的是,如果仅根据答案的正确性来评估模型,它可能永远不会因为在训练过程中在思维链中幻想代码工具而受到惩罚,因此永远不会学会区分真正的工具和幻想的工具
OpenAI的o系列模型,不会向用户展示完整思维链这一特性也可能带来新的问题。
2024年9月o1-preview的System Card中就包括这样一个案例,由于没有联网权限无法生成真实的 URL,o1生成了一个看似合理的URL,但并未向用户透露这一点。
Transluce认为,不向用户展示思维链背后还有一个更大的风险:思维链没有传递到未来的对话,模型前一轮的推理不再适用。
关于这一点,在OpenAI的文档中有证实:
每个步骤的输入和输出tokens都会被保留,而推理tokens会被丢弃。
这意味着o系列模型无法理解上一部输出的推理过程,当被问及后续问题时,必须给自己的行为给出一个合理的解释。
换句话说,o系列模型实际上缺乏足够的上下文信息来准确报告它们在之前回合中采取的行动。
当用户询问之前的操作时,这些模型无法使用“说实话”这种简单的策略。如果再加上奖励黑客攻击和谄媚等其他因素,这可能会迫使模型盲目猜测其过去答案的合理解释。
Transluce建议,测试能够访问和无法访问先前思维链的两种模型,可以为减少未来模型迭代中的这些捏造倾向提供宝贵的见解。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】