本文速览
AI监考的底层逻辑与应用现状
三组最新数据,看优点也看盲点
常见质疑:误报、隐私、心理压力
“三步可落地”行动清单
工具/平台推荐与未来展望
引言|一间“看得见呼吸”的考场
想象一下:监控摄像头的红灯闪烁,你的眼动轨迹、鼠标点击、键盘节奏都被实时上传到云端——AI 正在判定你是否作弊。它效率惊人,却也可能因为一次哈欠就给你打上“异常”标签。AI 监考,究竟是公平守护者,还是另一种风险源?
1 AI监考的原理与全球实践
1.1 电脑视觉+行为识别
-
核心技术:人脸识别、光线稳定追踪、音频异常检测、浏览器锁屏。
-
协同模式:“AI实时标记+人工复核”已成主流,可在回放界面直接定位高风险片段,减少人工巡查时间约 60%arXiv。
1.2 中国高考与美国高校的双线试点
-
中国高考:2024 年不少考点启用虹膜+AI摄像头“双保险”,考试当天抓获携带隐形耳机等作弊设备 57 起,较上一年度下降 32%#SixthTone。
-
北美高校:Proctortrack、Examity 等平台服务覆盖 400+ 所院校,宣称“作弊率降至 1%-2% 之间”Proctortrack。
2 数据说话:效果与局限并存
指标 | 纯人工监考 | AI +人工复核 | 纯 AI 自动标记 | 说明 |
---|---|---|---|---|
检出率*(作弊被发现概率) | ~78% | 92% ResearchGate | 85% | AI 对可视线索更敏感 |
误报率(冤枉好人) | 6% | 3.6% (↓40%)talview.com | 8% | 姿势多样或照明不足易触发 |
监考人力成本 | 100% | ≈40% | ≈10% | AI 可替代长时巡查 |
*注:不同研究口径略有差异,仅供横向对比。 |
盲点提醒:英国雷丁大学实验显示,33 份由 ChatGPT-4 写成的论文仅 1 份被查出异常,且平均得分高于真实学生卫报。AI 检测文本型作弊仍存短板。
3 争议焦点
-
误报压力
-
学生若被“黄牌”警示,其后续答题表现平均下降 5-8 分ResearchGate。
-
-
隐私与合规
-
欧盟《AI 法案》将高风险应用(含“远程生物识别监考”)列入重点监管;国内《数据安全法》要求取得考生单独同意并最小化采集范围。
-
-
技术对抗
-
“深度伪装”软件、假人头像等黑灰产兴起,平台需持续算法升级,对抗呈拉锯态。
-
4 “三步可落地”行动清单
目标:在 30 天内,让学校或培训机构安全、低风险地上线 AI 监考方案。
步骤 | 关键任务 | 时间投入 | 风险控制要点 |
---|---|---|---|
Step 1 需求评估 | 确定考试规模、题型、网络带宽 | 3 天 | 避免“场景-技术”错配 |
Step 2 小规模试点 | 选 1-2 个班级、使用“双录屏+AI标记” | 2-3 周 | 设置人工复核阈值,如“3 次异常=人工介入” |
Step 3 正式上线 | 完成师生培训、隐私告知、家长沟通 | 1 周 | 明示数据保存期限,不超过 6 个月 |
5 工具/平台推荐
名称 | 核心功能 | 适用场景 | 备注 |
---|---|---|---|
Proctorio | 浏览器锁定+面部识别 | 校内机房/居家 | 提供 LMS 插件 |
Examity | 实时 AI 标记+人工巡查 | 大规模在线测评 | 已对接 Canvas |
知云智考 | 本地化部署+本土客服 | 校级统考 | 支持中文工单 |
Think Proctor | 低带宽优化 | 乡村学校 | 最低 128 kbps 运行 |
结语|技术永远不是唯一答案
AI 监考带来了更高的检出率,也带来了隐私、误报的新挑战。真正的“公平考场”,离不开 技术+制度+信任 的三维支撑。教师与管理者既要用好新工具,也要持续反思评价方式,让考试回归“测能力、促成长”的初心。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓