作为AI领域的大势所趋,多模态可谓是火的一塌糊涂,在各大顶会都是霸榜的存在!
关于它的研究,近来也发生了诸多变化:跨界缝合成为新风向,比如用多模态模型分析财报文本+管理层表情+市场指标预测企业价值;研究视角也从静态分析,走向动态推理;模型的可解释性、结合垂直领域开发专属大模型等也成为重点!
为让大家能够紧跟领域前沿,早点发出自己的顶会,我给大家梳理了目前还好出创新点的7大方向:多模态大模型、多模态预训练、多模态生成、多模态感知、多模态推理、多模态数据高效学习、多模态可解释。每个方向还给大家准备了代表性论文、最新论文和源码,共100篇!
1.多模态大模型
论文:Harnessing Multimodal Large Language Models for Multimodal Sequential Recommendation
内容
该论文提出了一种名为MLLM-MSR的模型,旨在利用多模态大语言模型(MLLMs)来增强多模态序列推荐系统,介绍了大语言模型(LLMs)在推荐系统中的应用进展,并指出了现有研究主要集中在将用户行为日志转换为文本提示以利用LLMs进行推荐任务。
2.多模态预训练
论文:Parameter-Inverted Image Pyramid Networks for Visual Perception and Multimodal Understanding
内容
该论文介绍了一种名为PIIP的新型网络架构,旨在提高计算机视觉任务中多尺度特征提取的效率,通过使用不同参数规模的预训练模型来处理不同分辨率的图像,其中高分辨率图像由参数较少的网络分支处理,以平衡计算成本和性能。
3.多模态生成
论文:GRAPHGPT-O: Synergistic Multimodal Comprehension and Generation on Graphs CVPR25
内容
该论文提出了GRAPHGPT-O,这是一个针对多模态属性图(MMAGs)的多模态大型语言模型(MLLMs),用于理解和生成图中的文本和图像内容。该模型通过个性化PageRank采样方法提取相关子图信息,解决了图规模爆炸问题。
4.多模态数据高效学习
论文:Multimodal Task Vectors Enable Many-Shot Multimodal In-Context Learning
内容
该论文提出了一种名为MTV的方法,旨在解决多模态领域中大型多模态模型(LMMs)在多示例上下文学习中的限制问题,通过在LMM的注意力头中压缩多示例上下文为紧凑的隐式表示,从而克服了这一限制。
5.多模态可解释
论文:SNIFFER: Multimodal Large Language Model for Explainable Out-of-Context Misinformation Detection
内容
该论文介绍了一种名为SNIFFER的新型多模态大型语言模型,专门用于检测和解释“情境外”虚假信息。SNIFFER通过两阶段指令调优在InstructBLIP基础上进行优化,通过检索和工具使用增强外部知识,不仅检测文本与图像之间的一致性,还利用外部知识进行上下文验证。
6.多模态感知
论文:Correlation-Decoupled Knowledge Distillation for Multimodal Sentiment Analysis with Incomplete Modalities
内容
本文提出了一种名为CorrKD的框架,用于处理多模态情感分析(MSA)任务中模态不完整的情况。该框架通过样本级对比蒸馏机制、类别引导的原型蒸馏机制和响应解耦的一致性蒸馏策略,从教师网络向学生网络传递包含跨样本相关性的全面知识,以重建缺失的语义信息。
7.多模态推理
论文:Mind with Eyes: from Language Reasoning to Multimodal Reasoning
内容
本文提供了一个关于多模态推理方法的系统性综述,将这些方法分为两个层次:以语言为中心的多模态推理和协作式多模态推理,分析了这些方法的技术演变,讨论了其固有挑战,并介绍了评估多模态推理性能的关键基准任务和评估指标。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】