目录
一、前言
汉诺塔:汉诺塔(Tower of Hanoi)源于印度传说中,大梵天创造世界时造了三根金钢石柱子,
其中一根柱子自底向上叠着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
二、游戏规则
现有三根杆子A, B, C。
A杆上有N个(N>1) 穿孔圆盘, 盘的尺寸由下到上依次变小.要求按下列规则将所有圆盘移至C杆:
1.每次只能移动一个圆盘
2.小圆盘上不能放大圆盘
可将圆盘临时置于B杆, 也可将从A杆移出的圆盘重新移回A杆, 但都必须尊循上述两条规则。求移动的过程。如果没看懂可以去玩一把体验一下:汉诺塔,汉诺塔游戏在线玩_7k7k益智游戏_7k7k小游戏
三、思路讲解
一层汉诺塔A->C 只需要一步;
二层汉诺塔(1、2)需要三步;
三层汉诺塔(1、2、3) 需要七步;
实现了最基础的一二三层汉诺塔后,可以发现用递归就可以实现
n层的汉诺塔,相当于 最上面(n-1)层封装成一层 和 最下面第1层 形成 二层汉诺塔结构
于是求解n层汉诺塔的问题就能大概看成这样“三个”步骤:
1:将前n-1层移到b
2:将第n层移到c(目的地)
3:将(已经位于b的)n-1层 移动到c
四、完整代码
#include<stdio.h>
int count = 0;
int Hanoi(int n, char x, char y, char z)//打印步骤
{
if (n == 1)
{
printf("move %d from %c to %c\n", n, x, z);
count++;
return count;
}
else
{
Hanoi(n - 1, x, z, y);
printf("move %d from %c to %c\n", n, x, z);
count++;
Hanoi(n - 1, y, x, z);
}
}
int main()
{
int n;
scanf_s("%d", &n);//有几个盘子
char A, B, C;//三根柱子
printf("总共的移动次数为:%d\n",Hanoi(n, 'A', 'B', 'C'));
return 0;
}
五、最终结果展示
以上就是所有的解析啦。如果对你有帮助,记得点赞👍收藏 关注哦!
我的主页还有其他文章,欢迎学习指点。
关注我,让我们一起学习,一起成长吧!