文章目录
目录
前言
1、最常规的方法,用辗转相除法
2、比较简便的方法
一、辗转相除法
举例:
假如需要求 1997 和 615 两个正整数的最大公约数,用辗转相除法,是这样进行的:
1997 ÷ 615 = 3 (余 152)
615 ÷ 152 = 4(余7)
152 ÷ 7 = 21(余5)
7 ÷ 5 = 1 (余2)
5 ÷ 2 = 2 (余1)
2 ÷ 1 = 2 (余0)
至此,最大公约数为1
#include<stdio.h>
int main()
{
int a = 0;
int b = 0;
scanf("%d %d", &a, &b);
int ret = 0;
//保证a>b
if (b > a)
{
ret = b;
b = a;
a = ret;
}
int c = a * b;
int d = 0;
//辗转相除法
do
{
d = a % b;
if (d != 0)
{
a = b;
b = d;
}
} while (d > 0);
c = c/b;//最小公倍数=a*b/最大公约数
printf("%d", c);
return 0;
}
不过,这个代码可能在运行中有可能出现问题,a*b的值如果过大,超出范围溢出,所以我们再加以改良一下,从a*b/k变成a/k*b。
#include<stdio.h>
int main()
{
int a = 0;
int b = 0;
scanf("%d %d", &a, &b);
int aa = a;
int bb = b;
int ret = 0;
//保证a>b
if (b > a)
{
ret = b;
b = a;
a = ret;
}
int c = 0;
int d = 0;
//辗转相除法
do
{
d = a % b;
if (d != 0)
{
a = b;
b = d;
}
} while (d > 0);
c = aa/b*bb;
printf("%d", c);
return 0;
}
我们知道,在运行过程中,a、b的值会改变,所以提前把值赋值给新的变量。
二、第二种方法
代码如下:
#include<stdio.h>
int main()
{
int a = 0;
int b = 0;
scanf("%d %d", &a, &b);
int i = 1;
while (a * i % b != 0)
{
i++;
}
printf("%d\n", a * i);
return 0;
}
这种方法就是最简便的了。这边的a、b位置可以调换,就是不用比较谁较大谁较小。