什么是预测问题
在数学建模比赛中常常会出现预测问题。所谓的预测问题简单来说,其实就是对已有数据进行统计分析后,寻找数据之间的关联性。最后利用寻找到的统计规律对某一数值特征的未知值进行预测。22年数学建模比赛中便有预测问题。
该问题便是要我们对其所给数据进行分析后预测出其风化前的化学成分含量。这类预测问题也是数学建模比赛中常见的一类问题。
数据拟合
面对之类问题我们可以采用较为传统的线性拟合技术来解决,所谓的拟合就是将平面的一系列点,用一条光滑曲线连接起来,并且让更多的点在曲线上或曲线附近。拟合常用的方法有最小二乘法、梯度下降法、高斯牛顿(即迭代最小二乘)、列-马算法。其中最最常用的就是最小二乘法。并且拟合可以分为线性拟合与非线性拟合,非线性拟合比较常用的是多项式拟合。根据自变量的个数,拟合也可以分为曲线拟合与曲面拟合等。但在数学建模中,我们更多接触的是非线性拟合。
神经网络
除了用拟合的方法来解决预测问题外,我们还可以利用神经网络来完成预测任务。神经网络又称人工神经网络 (ANN) 或模拟神经网络 (SNN),是机器学习的子集,同时也是深度学习算法的核心。 其名称和结构均受到人脑的启发,可模仿生物神经元相互传递信号的方式。与拟合而言,神经网络更像是黑箱调节,其更加符合现实生活中的非线性问题。在比赛中神经网络用的好的话,对比赛会有意想不到的帮助。典型的神经网络有BP神经网络、LeNet5 模型、AlexNet 模型、VGG模型、RNN、LSTM等模型。对于不同的模型,其应用的场景也有所不同。
大家对数学建模感兴趣的可以加一下交流群QQ:201289948
群里会不定期的分享免费学习资料和模型代码。