形态学图像处理
数学形态学概述
集合论:并、交、补、差
形态学的基本思想:用具有一定形态的结构元素去度量和提取图像中的对应形状以达到对图像分析和识别的目的
形态学特点:
【1】反映像素点间的逻辑关系
【2】非线性方法,具备不可逆性
【3】并行实现的结构
【4】描述和定义图像的各种集合参数与特征
形态学基本运算
形态学处理:基于填放结构元素
基本运算:腐蚀(或侵蚀)、膨胀(或扩张)、开启、闭合
结构元素:在特定研究目的下用来探测图像的一个小的集合或者子图像
简单的对称结构元素:
形态学中的基本概念和符号:
(1)包含
(2)击中
(3)击不中
(4)平移
(x, y)变成(x+x0, y+y0)
a点 (x0, y0)
(5)对称集
令(x, y)变成(-x, -y)
形态学图像处理的基本操作
1. 腐蚀(或侵蚀)
结构元素B填入图像A,B的原点组成新的腐蚀图像
理解角度:
(1)填充
(2)平移
影响因素:
(1)结构元素原点位置
原点在结构元素内部时,腐蚀结果也在原始图像内部
原点在结构元素外部时,腐蚀结果偏离了原始图像的位置
(2)结构元素形状
(3)结构元素矩阵大小
2. 膨胀(或扩张)
理解角度:
(1)击中
(2)平移
影响因素:
(1)结构元素原点位置
(2)结构元素形状
(3)结构元素矩阵大小
腐蚀运算与膨胀运算的对偶性:
对目标图像的膨胀运算,相当于对图像背景的腐蚀运算操作
对目标图像的腐蚀运算,相当于对图像背景的膨胀运算操作
3. 开启和闭合
开运算:细长的突出被去除,目标像素变成背景
闭运算:狭窄的间断被填充,背景像素变成目标
开运算与闭运算互为对偶
【1】开运算
使用相同的结构元素,先腐蚀,后膨胀
经过开运算的图像比原始图像更规则化:轮廓被平滑、细长的部分被去除、小的孤岛被去除
【2】闭运算
使用相同的结构元素,先膨胀,后腐蚀
经过闭运算的图像比原始图像更规则化:小的通道和小孔被填满
4. 细化与粗化
【1】细化
把线宽不均匀的边缘线整理成同一线宽(一般为1像素宽)的处理
⊛ 是击中击不中变换:
像素邻域与前景部分B1匹配,腐蚀原始图像
像素邻域的背景与背景部分B2匹配,腐蚀原始图像的补集(背景区域)
取两者的交集
【2】粗化
对原图的补集进行细化后,取处理结果的补集
5. 骨架化
用一组与原始形状连通性和拓扑结构分布性质完全一致的表达物体形状的曲线集合
A的骨架可以用腐蚀和开操作来表达
骨架化 VS 细化:
细化是将图像的线条从多像素宽度减少到单位像素宽度过程
中轴骨架在拐角处延伸到了边界,细化则不是
6. 区域填充
区域填充:寻找背景点
7. 连通成分提取
连通分量的提取:寻找前景点
8. 边界清除