【数字图像处理】立体视觉基础(1)

成像

成像过程:三维空间坐标到二维图像坐标的变换

相机矩阵:建立三维到二维的投影关系

相机的使用步骤(模型-视图变换):

(1)视图变换

(2)模型变换

(3)投影变换

(4)视口变换

相机的参数:含内参(intrinsics)、外参(extrinsics)、畸变系数(distortion coefficients)

相机内参矩阵

【1】针孔成像

障碍物滤除大多数的辐射线后,通过小孔成像。

即通过光圈孔径成像。

【2】相机模型基础

•针孔成像模型(Pinhole camera model)

•正射投影(Orthographic projection)

•缩放投影(Scaled orthographic projection)

•平行透视(Paraperspective projection)

•透视投影(Perspective projection)

【3】相机内参推演

内参矩阵:将3D相机坐标变换到2D齐次图像坐标

【4】相机内参矩阵计算

(1)焦距:从像素到世界单元

内参矩阵只关心相机坐标和图像坐标之间的关系,与相机的绝对尺寸无关

(2)2D变换中的相机内参的计算

方式一:将内参矩阵分解分别对应焦距、主点偏移、轴倾斜

方式二:将内参矩阵分解分别对应主点偏移、轴倾斜、焦距

内参不影响可见性——阻隔对象

在图像空间中无法通过简单的2D变换显示出来

相机外参矩阵

【1】相机外参导论

透视投影或立体投影

相机外参矩阵:世界坐标系到相机坐标系的刚体变换

旋转和平移来描述物体相对于相机坐标系统的相对姿态

世界坐标系与相机坐标系之间的关系可以用旋转矩阵 R 平移向量 t 来描述

(1)平移矩阵

(2)旋转矩阵

外参矩阵以刚体变换矩阵的形式:旋转矩阵 + 平移列向量

【2】相机外参求解

相机姿态的变换矩阵 (Rc |C)

        描述相机中心在世界坐标系中的位置的 向量 C 

        相机在世界坐标系旋转到当前姿态需要的 旋转矩阵 Rc

外参矩阵 是 相机姿态矩阵的逆

结合相机内参+外参:

镜头畸变

镜头畸变:透镜由于制造精度以及组装工艺的偏差会引入畸变,导致原始图像的失真

分类:径向畸变和切向畸变

        一共有5个畸变参数:k1、k2、k3、p1、p2

(1)径向畸变

沿着透镜半径方向分布的畸变

主要包括:枕形畸变和桶形畸变

调节公式:

(2)切向畸变

透镜本身与相机传感器平面(成像平面)或 图像平面不平行

相机模型参数归纳

相机中四个坐标系:{world},{camera},{image},{pixel}

【1】从{world}到{camera}

【2】从{camera}到{image}

【3】从{image}到{pixel}

【4】从{world}到{pixel}四个坐标系的变换过程

镜头畸变:

16个单目相机的参数:

(1)10个内部参数

(2)6个外部参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MorleyOlsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值