机器翻译——将一种语言翻译成另一种语言

目录

1.实验内容

1.1编码器

1.2GRU

1.3注意力机制

1.4解码器

2.实现机器翻译

2.1实验目的

2.2实验环境

2.3实验流程

3.具体代码实现

3.1实验数据预处理

3.2开始实验

3.2.1实验准备

3.2.2实验训练

3.3实验评价

4.实验小结


1.实验内容

1.1编码器

在序列到序列(Seq2Seq)模型中,编码器负责将输入序列转换为一个上下文向量,这个上下文向量包含了输入序列中的重要信息,用于解码器生成输出序列。编码器通常使用循环神经网络(RNN)或其变体,如长短期记忆网络(LSTM)或门控循环单元(GRU)来实现

1.2GRU

  GRU是一种循环神经网络(RNN)的变体,它旨在解决传统RNN在处理长序列数据时遇到的梯度消失和梯度爆炸问题。GRU通过引入门控机制来控制信息的流动,使得模型能够更好地捕捉长期依赖关系。GRU的结构相对于传统的RNN单元更为复杂,但它比长短期记忆网络(LSTM)单元要简单一些,因为GRU将LSTM中的三个门(输入门、遗忘门和输出门)简化为两个门:更新门和重置门。

1.3注意力机制

注意力机制是一种在神经网络中用来处理序列到序列(Seq2Seq)模型中输入序列和输出序列之间依赖关系的技术。它允许模型在处理输入序列的某个部分时,集中注意力于输出序列的相应部分。这种机制使得模型能够更加灵活地处理输入序列,从而提高模型的性能

1.4解码器

在序列到序列(Seq2Seq)模型中,解码器负责根据编码器生成的上下文向量生成输出序列。解码器通常使用循环神经网络(RNN)或其变体,如长短期记忆网络(LSTM)或门控循环单元(GRU)来实现。

2.实现机器翻译

2.1实验目的

机器翻译是指将一段文本从一种语言自动翻译到另一种语言。因为一段文本序列在不同语言中的长度不一定相同,所以我们使用机器翻译为例来介绍编码器—解码器和注意力机制的应用。

2.2实验环境

Python 3.6.7且主要运用pytorch库

2.3实验流程

3.具体代码实现

3.1实验数据预处理

定义函数提取词,将词构建成词典,并将词转化为词索引后构造张量。注意要先定义一些特殊字符用于填充,开始和结束的序列。定义对于输入输出数据集进行处理的函数,将行分割成序列,再将序列分割成词,再调用之前的函数处理序列,使之变成词典和张量。

3.2开始实验

3.2.1实验准备

编码器:我们可以通过之前的预处理得到词索引,在编码器中将词索引转化为词向量,再通过GRU处理序列数据,得到隐藏状态。再定义前向传播方法将一批序列数据通过嵌入层转换为嵌入向量序列,然后送入RNN层进行处理,并返回RNN层的输出和最终的隐藏状态,最后返回编码器的初始状态。

注意力机制:定义一个序列包含有三个不同功能的线层模型。将输入的解码器当前的隐藏状态与编码器的隐藏状态连结起来,然后通过之前定义的模型处理后利用softmax函数计算得到注意力权重。将权重应用于编码器的隐藏状态,得到一个背景变量,这个背景变量可以用于解码器的下一个时间步。这样可以使我们得到的结果更加的全面,客观。

含注意力机制的解码器:在被定义的解码器中应当包含如下部分嵌入层,注意力模型,GRU对于输入的处理,输出层。定义一个前向传播,使用注意力机制计算背景向量,然后将嵌入后的输入和背景向量连结起来,送入RNN层进行处理,最后通过一个全连接层得到最终的输出。最后直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态。

3.2.2实验训练

定义损失函数计算一个小批量的损失值。输入编码器的初始状态,用编码器处理得到输出序列。初始化解码器隐藏状态,用掩码忽略填充项的损失,遍历输出每个序列的时间步,得到损失值。

训练函数:初始化解码器与编码器的优化器,损失函数,批量加载数据,在每一次迭代时训练,记录损失值。

模型实例训练:定义超参数嵌入层,隐藏层,RNN层,注意力层等一系列超参数。构建解码器与编码器模型,训练,打印出每一次迭代的损失值。

3.3实验评价

预测不定长的序列:贪婪搜索。分割输入序列,添加结束符和填充符,转换词索引,获取编码器的初始状态,编码器处理输入序列和初始状态,得到编码器的输出和最终状态。初始化解码器,遍历解码器的时间步,在每个时间步,使用解码器处理当前输入、当前状态和编码器输出,得到解码器的输出和下一状态,获取预测结果,判断是否结束,返回输出序列。

测试结果:

bleu函数评估模型性能:通过预测序列长度和真实序列长度的比较计算得到初始分数。通过比较预测子串能和真实子串对应上的个数对分数进行更新。打印出相应分数。

测试结果:

4.实验小结

通过本次实验,了解到了关于编码器,注意力机制,含有注意力机制的解码器的基本实现原理。对于各种神经网络模型有了进一步的了解。掌握了bleu方法对于模型进行性能评估。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值