python 爬虫爬取疫情数据,爬虫思路和技术你全都有哈(二)

上一章:

python 爬虫爬取疫情数据,爬虫思路和技术你全都有哈(一、爬虫思路及代码)

第三步:数据清洗

清洗数据很简单,就是数据太乱的话,就得花些时间,所以一定要有一个好的方法,才能避免在清洗数据上花费太多的时间

def xpath_json(resp):
    print('xpath_json  ------  2')
    html = etree.HTML(resp)
    str_list = html.xpath("//script[@id='captain-config']/text()")
    str_list = str_list[0].replace('\'', '')  # 去掉 '' 单引发
    str_list = str_list.encode('utf-8')  # 转码字符集,转码中文
    # str_list = str_list.encode('utf-8').decode('unicode_escape')  # 转码字符集,转码中文
    json_list = json.loads(str_list)

    return json_list



if __name__ == '__main__':

    url = 'https://voice.baidu.com/act/newpneumonia/newpneumonia/?from=osari_aladin_banner&city='
    
    # 请求HTTP
    resp = HTTP_get(url)
    print(resp)
    
    # 解析数据
    json_list = xpath_json(resp)

    # 加上这样一个代码,之后会去掉的,只是方便 我们清洗数据,看清这个json格式
    with open('JsonData.json','w+',encoding='utf-8') as f:
        f.write(str(json_list))

 运行后,按下 ctrl + alt + L  进行数据格式化,之后就是这样了哈,50000多条,有点多哈

 慢慢分析这些数据

 验证一下是不是这些的数据,去百度查询西藏的总数据。

结果数据都是正确的,那么我们成功找到了我们想要的数据了。

英文的大概意思就是这些。

confirmedRelative             # 新增确诊
unOverseasInputNewAdd         # 新增本土
overseasInputRelative         # 新增境外
asymptomaticRelative          # 新增无症状
curConfirm                    # 现有确症 ------
curLocalConfirm               # 现有本土
curOverseasInput              # 现有境外
asymptomatic    
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源源佩奇

一起进步,提高自己。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值