- 博客(13)
- 收藏
- 关注
原创 Redis反序列化问题:Failed to deserialize object type; nested exception is java.lang.ClassNotFoundException:
今日在启动微服务项目时进行查询功能测试报错这个问题: 刚开始我看最后一个 Caused by 以为是类找不到了,但是找了很久都没有发现我写了com.yupi...这个包,直到看了第二第三个 Caused by 才知道是反序列化错误,也就是说要反序列化com.yupi.zt_oj.model.entity.User类,但是找不到这个类。之所以找不到这个类,不是因为没有写,而是因为多个项目共用了同一个redis库所导致。这个微服务项目是由已经开发好的单体项目改造而来,而原先的单体项目用的是redis的
2025-05-11 18:20:43
335
原创 vue3 + Arco Design + OpenAPI + Spring Boot实现图像上传并回显
大学四年,图像上传一直是盲点,今天做毕设的时候恰巧遇上了,总算是攻克了,记录一下下。
2025-04-25 15:30:57
328
原创 vue动态传参
这里我遇到的问题就是:第一、如何传参;第二、如何动态获取数据并渲染。在SolutionList中为每一个列表添加一个点击事件,当事件触发时更新参数,同时ProblemSolution检测到参数更新时动态获取。
2025-04-18 10:06:51
333
原创 VScode中的Prettier自动格式化代码
设置Format On Save和Default Formatter即可。当前用的是Trae,但其实其他的都差不多,比如cursor、vs。一、打开设置Settings,搜索Format On Save并勾选。第三点忽略,理论上来说其他的保持默认应该可以。二、设置 Default Formatter。
2025-04-15 16:28:23
679
原创 第五章 深度学习计算
要想直观地了解块是如何工作的,换句话说,想要直观地了解Sequential类是怎么工作的,最简单的方法就是自己实现一个。在实现我们自定义块之前,我们简要总结一下每个块必须提供的基本功能。将输入数据作为其前向传播函数的参数。通过前向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。例如,我们上面模型中的第一个全连接的层接收一个20维的输入,但是返回一个维度为256的输出。计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。存储和访问前向传播计算所需的参数。
2025-04-10 15:56:49
975
原创 第十一章 优化算法
Adam是openai提出的一种随机优化方法,在深度学习算法优化中得到广泛的使用,是一种高效的优化算法。该算法是在梯度下降算法(SGD)的理念上,结合Adagrad和RMSProp算法提出的,计算时基于目标函数的一阶导数,保证了相对较低的计算量,并且Adam算法仅需要少量的内存。adma的优点如下:参数更新的大小不随着梯度大小的缩放而变化更新参数时的步长的边界受限于超参的步长的设定不需要固定的目标函数支持稀疏梯度它能够自然的执行一种步长的退火。
2025-04-09 14:57:48
949
原创 图卷积神经网络(Graph Convolutional Networks, GCN)
GCN是一种能够直接作用于图并且利用其结构信息的卷积神经网络。GCN,图卷积神经网络,实际上跟CNN的作用一样,就是一个特征提取器,只不过它的对象是图数据。GCN精妙地设计了一种从图数据中提取特征的方法,从而让我们可以使用这些特征去对图数据进行节点分类(node classification)、图分类(graph classification)、边预测(link prediction),还可以顺便得到图的嵌入表示(graph embedding),可见用途广泛。
2025-04-08 15:04:40
1134
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅