蒜头君的工厂需要生产 nn 个产品,每个产品会在记录本上记录开始生产的时间 xx 以及完成生产的时间 yy。
现在蒜头君拿到这本记录本以后想知道最多有多少件产品同时在生产线上生产。
注意:在同一时刻总是开始生产的产品先进入流水线
输入格式
输入第一行只有一个整数 nn ,表示记录本上共记录了 nn 件产品的信息。
接下来 nn 行,每行两个整数 xx 和 yy,表示一件产品开始生产的时间和完成生产的时间。
输出格式
输出仅有一行,该行只有一个整数,表示最多有多少件产品同时在生产线上生产。
数据范围
对于 50\%50% 的数据中,1 <= n <= 1000, 1 <= x <= y <= 1000,1≤n≤1000,1≤x≤y≤1000
对于 100\%100% 的数据中,1≤n≤100000, 1≤x≤y≤100000000
思路:
构造一个全为0的数组s,如果一个产品在2到6之间生产,那么将s[2]到s[6]的元素全部加1,可想而知,生产时间重合的产品会使得某些元素重复加1,那么最后可以根据,最大的那个元素判断同一时间的最大生产数。
差分数列引用:缀和与差分 图文并茂 超详细整理(全网最通俗易懂)林深不见鹿 的博客-CSDN博客前缀和与差分
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAX = 1e8 + 100;
int a[MAX] = { 0 }; //构造一个全为0的原数列
int s[MAX] = { 0 }; //构造a数组的差分数列
int main()
{
int n;
int num=0;
scanf("%d", &n);
int l, r;
for (int i = 1; i <= n; i++)
{
scanf("%d%d", &l, &r);
s[l] += 1; //利用差分数列对l到r的元素进行+1操作
s[r + 1] -= 1;
}
for (int i = 1; i <= MAX-1; i++)
{
s[i] = s[i] + s[i - 1]; //由差分数列重新推导原数列
}
for (int i = 1; i <= MAX - 1; i++)
if (s[i] > num)
num = s[i]; //选取原数列最大的那个
printf("%d", num);
}