一、初识Sentinel
一、雪崩问题及解决方式
什么是雪崩问题:雪崩问题就是业务中某一个服务发生故障,请求阻塞了。由于服务器和并发数有限,越来越多的用户请求的这个服务被阻塞将服务器的资源耗尽,导致了其他服务也不可用,与这些服务级联的服务也不可用,导致了雪崩。
雪崩的解决方案有四种:
超时处理 :设置超时时间,超过超时时间没有响应就返回错误信息
仓壁模式:设置每个进程的能使用线程数,避免资源耗尽
断路器:统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。
限流(流量控制):限制业务访问的QPS,避免服务因流量的突增而故障。
二、Sentinel安装
早期比较流行的是Hystrix框架,但目前国内实用最广泛的还是阿里巴巴的Sentinel框架。
官网地址:home | Sentinel
sentinel官方提供了UI控制台,方便我们对系统做限流设置。大家可以在 发布 ·阿里巴巴/哨兵 (github.com)下载。
运行sentinel的jar包
java -jar sentinel-dashboard-1.8.1.jar
二、服务保护技术
一、流量控制
QPS:每秒允许的请求次数
三种流控模式:
直接:统计当前资源的请求,触发阈值(QPS)时对当前资源直接限流,也是默认的模式
关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流 。满足下面条件可以使用关联模式: 两个有竞争关系的资源 一个优先级较高,一个优先级较低
链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流
链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。
例如有两条请求链路: /test1 /common /test2 /common,可以对/common链路限流
默认链路模式是不被Sentinel监控的,需要我们自己通过注解@SentinelResource来标记要监控的方法。
链路模式中,对不同来源的两个链路做监控时sentinel默认会给进入SpringMVC的所有请求设置同一个root资源,会导致链路模式失效。
我们需要关闭这种对SpringMVC的资源聚合application.yml文件:
spring:
cloud:
sentinel:
web-context-unify: false # 关闭context整合
流控效果
-
快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。
-
warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。
-
排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长,如果请求预期的等待时间超出最大时长,则会被拒绝。
二、隔离和降级
线程隔离(舱壁模式):调用者在调用服务提供者时,给每个调用的请求分配独立线程池,出现故障时,最多消耗这个线程池内资源,避免把调用者的所有资源耗尽。
熔断降级:是在调用方这边加入断路器,统计对服务提供者的调用,如果调用的失败比例过高,则熔断该业务,不允许访问该服务的提供者了。
feign整合sentinel
开启Feign的Sentinel功能:
feign:
sentinel:
enabled: true # 开启feign对sentinel的支持
失败降级逻辑
业务失败后,不能直接报错,而应该返回用户一个友好提示或者默认结果,这个就是失败降级逻辑。
给FeignClient编写失败后的降级逻辑
①方式一:FallbackClass,无法对远程调用的异常做处理
②方式二:FallbackFactory,可以对远程调用的异常做处理,我们选择这种
-
给FeignClient编写方法实现FallbackFactory接口并注册为Bean
-
将实现FallbackFactory接口的方法配置到FeignClient
线程隔离
线程隔离有两种方式实现:
-
线程池隔离 :给每个服务调用业务分配一个线程池,利用线程池本身实现隔离效果,就是QPS
-
信号量隔离(Sentinel默认采用):不创建线程池,而是计数器模式,记录业务使用的线程数量,达到信号量上限时,禁止新的请求,就是线程数。
熔断降级
断路器控制熔断和放行是通过状态机来完成的:
-
closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
-
open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态
-
half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
-
请求成功:则切换到closed状态
-
请求失败:则切换到open状态
-
断路器熔断策略有三种:慢调用、异常比例、异常数
慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。
解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。
异常比例:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值,则触发熔断。
或异常数:计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的超过指定异常数,则触发熔断。
三、授权规则
授权规则有白名单和黑名单两种方式。
-
白名单:来源(origin)在白名单内的调用者允许访问
-
黑名单:来源(origin)在黑名单内的调用者不允许访问
通过实现接口RequsetQriginParser来过去请求头的origin判断
@Component
public class HeaderOriginParser implements RequestOriginParser {
@Override
public String parseOrigin(HttpServletRequest request) {
// 1.获取请求头
String origin = request.getHeader("origin");
// 2.非空判断
if (StringUtils.isEmpty(origin)) {
origin = "blank";
}
return origin;
}
}
因此所有请求都要加上请求头origin
这个需要利用之前学习的一个defaultFilter来实现,修改gateway服务中的application.yml
spring:
cloud:
gateway:
default-filters:
- AddRequestHeader=origin,gateway
routes:
# ...略
自定义异常
自定义不允许访问的请求,返回的异常,通过实现BlockExceptionHandler接口的handle方法
@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {
@Override
public void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {
String msg = "未知异常";
int status = 429;if (e instanceof FlowException) {
msg = "请求被限流了";
} else if (e instanceof ParamFlowException) {
msg = "请求被热点参数限流";
} else if (e instanceof DegradeException) {
msg = "请求被降级了";
} else if (e instanceof AuthorityException) {
msg = "没有权限访问";
status = 401;
}response.setContentType("application/json;charset=utf-8");
response.setStatus(status);
response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");
}
}
四、规则持久化
现在,sentinel的所有规则都是内存存储,重启后所有规则都会丢失。在生产环境下,我们必须确保这些规则的持久化,避免丢失。
规则是否能持久化,取决于规则管理模式,sentinel支持三种规则管理模式:
-
原始模式:Sentinel的默认模式,将规则保存在内存,重启服务会丢失。
-
pull模式
pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则。
-
push模式
push模式:控制台将配置规则推送到远程配置中心,例如Nacos。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新。