运维高级篇-分库分表(拆分策略详解)

27 篇文章 0 订阅
本文详细介绍了在互联网应用系统中,由于数据量增长导致的性能瓶颈问题,重点讲解了分库分表的策略,包括垂直拆分(按表和字段)、水平拆分(按字段),以及各自的特点和适用场景。
摘要由CSDN通过智能技术生成

分库分表

介绍

问题分析

 

随着互联网及移动互联网的发展,应用系统的数据量也是成指数式增长,若采用单数据库进行数据存 储,存在以下性能瓶颈:

  • IO瓶颈:热点数据太多,数据库缓存不足,产生大量磁盘IO,效率较低。 请求数据太多,带宽 不够,网络IO瓶颈。

  • CPU瓶颈:排序、分组、连接查询、聚合统计等SQL会耗费大量的CPU资源,请求数太多,CPU出 现瓶颈。

 

分库分表的中心思想都是将数据分散存储,使得单一数据库/表的数据量变小来缓解单一数据库的性能 问题,从而达到提升数据库性能的目的。

拆分策略

分库分表的形式,主要是两种:垂直拆分和水平拆分。而拆分的粒度,一般又分为分库和分表,所以组 成的拆分策略最终如下:

 

垂直拆分

垂直分库

 

垂直分库:以表为依据,根据业务将不同表拆分到不同库中。

特点:

  • 每个库的表结构都不一样。

  • 每个库的数据也不一样。

  • 所有库的并集是全量数据。

垂直分表

 

垂直分表:以字段为依据,根据字段属性将不同字段拆分到不同表中。

特点:

  • 每个表的结构都不一样。

  • 每个表的数据也不一样,一般通过一列(主键/外键)关联。

  • 所有表的并集是全量数据。

水平拆分

水平分库

 

水平分库:以字段为依据,按照一定策略,将一个库的数据拆分到多个库中。

特点:

  • 每个库的表结构都一样。

  • 每个库的数据都不一样。

  • 所有库的并集是全量数据。

水平分表

 

水平分表:以字段为依据,按照一定策略,将一个表的数据拆分到多个表中。

特点:

  • 每个表的表结构都一样。

  • 每个表的数据都不一样。

  • 所有表的并集是全量数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

元气满满的热码式

感谢您的支持!我会继续努力发布

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值