第 3 场 蓝桥杯小白入门赛 解题报告 | 珂学家 | 单调队列优化的DP + 三指针滑窗

文章介绍了五种编程挑战题目,涉及不同思路:A.前后缀和、B.聪明的交换策略、C.怪兽突击、D.蓝桥快打(二分)、E.奇怪的段(单调队列优化DP)、F.小蓝的反击(滑动窗口),展示了不同的算法技巧和时间复杂度优化。
摘要由CSDN通过智能技术生成

前言

在这里插入图片描述


整体评价

T5, T6有点意思,这场小白入门场,好像没真正意义上的签到,整体感觉是这样。


A. 召唤神坤

思路: 前后缀拆解

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;

int main()
{
  // 请在此输入您的代码
  int n;
  cin >> n;
  vector<int> arr(n);
  for (int i = 0; i < n; i++) {
    cin >> arr[i];
  }
  vector<int> pre(n);
  vector<int> suf(n);

  pre[0] = -1;
  for (int i = 1; i < n; i++) {
    pre[i] = max(arr[i - 1], pre[i - 1]);
  }
  suf[n - 1] = -1;
  for (int i = n - 2; i >= 0; i--) {
    suf[i] = max(arr[i + 1], suf[i + 1]);
  }

  int res = 0;
  for (int i = 1; i < n - 1; i++) {
    res = max(res, (pre[i] + suf[i]) / arr[i]);
  }
  cout << res << endl;

  return 0;
}

B. 聪明的交换策略

思路: 模拟+枚举

#include <bits/stdc++.h>
using namespace std;

int main()
{
  // 请在此输入您的代码
  int n;
  cin >> n;
  string s;
  cin >> s;

  // long long res = 1LL << 60;

  long long acc1 = 0, acc2 = 0;
  int t0 = 0, t1 = 0;
  for (int i = 0; i < n;i++) {
    char c = s[i];
    if (c == '0') {
      acc1 += (i - t0);
      t0++;
    } else {
      acc2 += (i - t1);
      t1++;
    }
  }
  cout << min(acc1, acc2) << endl;

  return 0;
}

C. 怪兽突击

思路: 枚举

#include <bits/stdc++.h>
using namespace std;
int main()
{
  // 请在此输入您的代码

  int n, k;
  cin >> n >> k;
  vector<int> arr(n), brr(n);
  for (int i = 0; i < n; i++) {
    cin >> arr[i];
  }
  for (int i = 0; i < n; i++) {
    cin >> brr[i];
  }

  long long res = 1LL << 60;

  long long pre = 0;
  long long mv = arr[0] + brr[0];
  for (int i = 0; i < n; i++) {
    if (i + 1 > k) break;
    pre += arr[i];
    mv = min(mv, (long long)arr[i] + brr[i]);
    res = min(res, pre + (k - i - 1) * mv);
  }
  cout << res << endl;

  return 0;
}

D. 蓝桥快打

思路: 二分

#include <bits/stdc++.h>
using namespace std;

using int64 = long long;

int main()
{

  // 请在此输入您的代码
  int t;
  cin >> t;
  while (t-- > 0) {
    int a, b, c;
    cin >> a >> b >> c;

    // 可以二分的
    int l = 1, r = b;
    while (l <= r) {
      int m = l + (r - l) / 2;

      // *) 
      int times = (b + m - 1) / m;
      if ((int64)(times - 1) * c < a) {
        r = m - 1;
      } else {
        l = m + 1;
      }   

    }

    cout << l << endl;

  }

  return 0;

}

E. 奇怪的段

思路: 单调队列优化的DP

这题只需要维护最大值就行,不需要维护单调队列

其核心是如下的公式

d p [ i ] [ j ] = max ⁡ t = 0 t = j − 1 d p [ i − 1 ] [ t ] + ( p r e [ j + 1 ] − p r e [ t ] ) ∗ w [ i ] dp[i][j] = \max_{t=0}^{t=j-1} dp[i - 1][t] + (pre[j + 1] - pre[t]) * w[i] dp[i][j]=t=0maxt=j1dp[i1][t]+(pre[j+1]pre[t])w[i]

公式拆解后

d p [ i ] [ j ] = max ⁡ t = 0 t = j − 1 ( d p [ i − 1 ] [ t ] − p r e [ t ] ) ∗ w [ i ] ) + p r e [ j ] ∗ w [ i ] dp[i][j] = \max_{t=0}^{t=j-1}(dp[i - 1][t] - pre[t]) * w[i]) + pre[j] * w[i] dp[i][j]=t=0maxt=j1(dp[i1][t]pre[t])w[i])+pre[j]w[i]

这样这个递推的时间代价为 O ( 1 ) O(1) O(1),而不是 O ( n ) O(n) O(n)

这样总的时间复杂度为 O ( n ∗ k ) O(n * k) O(nk)


import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;

public class Main {

    public static void main(String[] args) {
        AReader sc = new AReader();

        int n = sc.nextInt(), p = sc.nextInt();
        int[] arr = new int[n];
        long[] pre = new long[n + 1];
        for (int i = 0; i < n; i++) {
            arr[i] = sc.nextInt();
            pre[i + 1] = pre[i] + arr[i];
        }
        int[] ws = new int[p];
        for (int i = 0; i < p; i++) {
            ws[i] = sc.nextInt();
        }

        // *)
        long inf = Long.MIN_VALUE / 10;
        long[][] dp = new long[p + 1][n];
        for (int i = 0; i <= p; i++) {
            Arrays.fill(dp[i], inf);
        }

        for (int i = 0; i < n; i++) {
            dp[1][i] = pre[i + 1] * ws[0];
        }

        // O(n)
        // dp[i - 1][j] - p * pre[j + 1] + p * pre[j]
        for (int i = 2; i <= p; i++) {
            long tmp = dp[i - 1][0] - ws[i - 1] * pre[1];
            for (int j = 1; j < n; j++) {
                dp[i][j] = tmp + ws[i - 1] * pre[j + 1];
                tmp = Math.max(tmp, dp[i - 1][j] - ws[i - 1] * pre[j + 1]);
            }
        }

        System.out.println(dp[p][n - 1]);

    }

    static
    class AReader {
        private BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
        private StringTokenizer tokenizer = new StringTokenizer("");
        private String innerNextLine() {
            try {
                return reader.readLine();
            } catch (IOException ex) {
                return null;
            }
        }
        public boolean hasNext() {
            while (!tokenizer.hasMoreTokens()) {
                String nextLine = innerNextLine();
                if (nextLine == null) {
                    return false;
                }
                tokenizer = new StringTokenizer(nextLine);
            }
            return true;
        }
        public String nextLine() {
            tokenizer = new StringTokenizer("");
            return innerNextLine();
        }
        public String next() {
            hasNext();
            return tokenizer.nextToken();
        }
        public int nextInt() {
            return Integer.parseInt(next());
        }

        public long nextLong() {
            return Long.parseLong(next());
        }

//        public BigInteger nextBigInt() {
//            return new BigInteger(next());
//        }
        // 若需要nextDouble等方法,请自行调用Double.parseDouble包装
    }

}


F. 小蓝的反击

思路: 滑窗 + 三指针

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.StringTokenizer;

public class Main {

    static List<int[]> split(int v) {
        List<int[]> res = new ArrayList<>();
        for (int i = 2; i <= v / i; i++) {
            if (v % i == 0) {
                int cnt = 0;
                while (v % i == 0) {
                    v /= i;
                    cnt++;
                }
                res.add(new int[] {i, cnt});
            }
        }
        if (v > 1) {
            res.add(new int[] {v, 1});
        }
        return res;
    }

    // *)
    static boolean check(int[][] pre, int s, int e, List<int[]> xx) {
        for (int i = 0; i < xx.size(); i++) {
            int tn = xx.get(i)[1];
            if (pre[i][e + 1] - pre[i][s] < tn) return false;
        }
        return true;
    }

    public static void main(String[] args) {
        AReader sc = new AReader();

        int n = sc.nextInt();
        int a = sc.nextInt();
        int b = sc.nextInt();

        int[] arr = new int[n];
        for (int i = 0; i < n; i++) {
            arr[i] = sc.nextInt();
        }
        if (b == 1) {
            System.out.println(0);
            return;
        }

        List<int[]> facs1 = split(a);
        int m1 = facs1.size();
        List<int[]> facs2 = split(b);
        int m2 = facs2.size();

        // 三指针做法
//        int[][] brr1 = new int[m1][n];
        int[][] pre1 = new int[m1][n + 1];

//        int[][] brr2 = new int[m2][n];
        int[][] pre2 = new int[m2][n + 1];

        for (int i = 0; i < n; i++) {
            int v = arr[i];
            for (int j = 0; j < m2; j++) {
                int p = facs2.get(j)[0];
                int tmp = 0;
                while (v % p == 0) {
                    v /= p;
                    tmp++;
                }
//                brr2[j][i] = tmp;
                pre2[j][i + 1] = pre2[j][i] + tmp;
            }

            v = arr[i];
            for (int j = 0; j < m1; j++) {
                int p = facs1.get(j)[0];
                int tmp = 0;
                while (v % p == 0) {
                    v /= p;
                    tmp++;
                }
//                brr1[j][i] = tmp;
                pre1[j][i + 1] = pre1[j][i] + tmp;
            }
        }

        long res = 0;
        int k1 = 0, k2 = 0;
        for (int k3 = 0; k3 < n; k3++) {

            // 找到不满足的点为止
            while (k1 <= k3 && check(pre1, k1, k3, facs1)) {
                k1++;
            }

            //
            while (k2 <= k3 && check(pre2, k2, k3, facs2)) {
                k2++;
            }

//            res += Math.min(k1, k2);
            // 0 - k1 - 1
            // k2 -> n

            res += (k2 <= k1 - 1) ? (k1 - k2): 0;
        }

        System.out.println(res);
    }

    static
    class AReader {
        private BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
        private StringTokenizer tokenizer = new StringTokenizer("");
        private String innerNextLine() {
            try {
                return reader.readLine();
            } catch (IOException ex) {
                return null;
            }
        }
        public boolean hasNext() {
            while (!tokenizer.hasMoreTokens()) {
                String nextLine = innerNextLine();
                if (nextLine == null) {
                    return false;
                }
                tokenizer = new StringTokenizer(nextLine);
            }
            return true;
        }
        public String nextLine() {
            tokenizer = new StringTokenizer("");
            return innerNextLine();
        }
        public String next() {
            hasNext();
            return tokenizer.nextToken();
        }
        public int nextInt() {
            return Integer.parseInt(next());
        }

        public long nextLong() {
            return Long.parseLong(next());
        }

//        public BigInteger nextBigInt() {
//            return new BigInteger(next());
//        }
        // 若需要nextDouble等方法,请自行调用Double.parseDouble包装
    }

}


写在最后

在这里插入图片描述

  • 34
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
单调队列优化DP是一种常用的优化方法,可以将时间复杂度从 $O(n^2)$ 降低到 $O(n)$ 或者 $O(n \log n)$。以下是一道利用单调队列优化DP的典型题目: 题目描述: 给定一个长度为 $n$ 的序列 $a_i$,定义 $f(i)$ 为 $a_i$ 到 $a_n$ 中的最小值,即 $f(i) = \min\limits_{j=i}^n a_j$。现在定义 $g(i)$ 为满足 $f(j) \ge a_i$ 的最小下标 $j$,即 $g(i) = \min\{j \mid j > i, f(j) \ge a_i\}$。如果不存在这样的下标 $j$,则 $g(i) = n+1$。 现在请你计算出 $1 \le i \le n$ 的所有 $g(i)$ 的值。 输入格式: 第一行包含一个整数 $n$。 第二行包含 $n$ 个整数 $a_1,a_2,\cdots,a_n$。 输出格式: 输出 $n$ 行,第 $i$ 行输出 $g(i)$ 的值。 输入样例: 5 3 1 2 4 5 输出样例: 2 5 5 5 6 解题思路: 设 $dp(i)$ 表示 $g(i)$,那么 $dp(i)$ 与 $dp(i+1)$ 的转移关系可以表示为: $$dp(i)=\begin{cases}i+1, &\text{if}\ f(i+1)\ge a_i \\dp(i+1), &\text{else}\end{cases}$$ 这个转移方程可以使用暴力 DP 解决,时间复杂度为 $O(n^2)$。但是,我们可以使用单调队列优化 DP,将时间复杂度降为 $O(n)$。 我们定义一个单调队列 $q$,存储下标。队列 $q$ 中的元素满足: - 队列中的元素是单调递减的,即 $q_1 < q_2 < \cdots < q_k$; - 对于任意的 $i\in [1,k]$,有 $f(q_i) \ge f(q_{i+1})$。 队列 $q$ 的作用是维护一个长度为 $k$ 的区间 $[i+1,q_k]$,满足这个区间中的所有 $j$ 都满足 $f(j) < f(i+1)$。 根据定义,当我们要求 $dp(i)$ 时,只需要查找队列 $q$ 中第一个满足 $f(q_j) \ge a_i$ 的位置 $q_j$,那么 $g(i) = q_j$,如果队列 $q$ 中不存在这样的位置,则 $g(i) = n+1$。 那么如何维护单调队列 $q$ 呢?我们可以在每次 DP 的过程中,将 $i$ 加入队尾。然后判断队首元素 $q_1$ 是否满足 $f(q_1) \ge a_i$,如果满足则弹出队首元素,直到队首元素不满足条件为止。 由于每个元素最多被加入队列一次,并且最多被弹出一次,因此时间复杂度为 $O(n)$。具体实现细节可以参考下面的代码实现:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值