6面蚂蚁,面试官被窝唬住了,居然开了36K

  • 第一部分:Java基础-中级-高级

  • 第二部分:开源框架(SSM:Spring+SpringMVC+MyBatis)

  • 第三部分:性能调优(JVM+MySQL+Tomcat)

  • 第四部分:分布式(限流:ZK+Nginx;缓存:Redis+MongoDB+Memcached;通讯:MQ+kafka)

  • 第五部分:微服务(SpringBoot+SpringCloud+Dubbo)

  • 第六部分:其他:并发编程+设计模式+数据结构与算法+网络

一面

================================================================

  • 介绍一下自己

  • 问项目经历, 聊"数据同步"

  • 接着聊上了 K8S 的项目

  • 有没有什么钻研得比较深得技术?(大佬:kubernetes, golang, prometheus, java)

  • kubernetes 的架构是怎么样的?

  • 这个问题很大,拆成 apiserver、controller、kubelet、scheduler 讲了一下

  • golang 与 java 的比较

  • 这个问题又很大,当时主要对比了 vm、协程支持、面向对象和泛型的区别、以及自己对各自使用场景的一些理解

  • golang 的 gc 算法

  • 知道是三色标记,不过细节说不上来

  • 从无限的字符流中, 随机选出 10 个字符

  • 没见过也没想出来,查了一下是蓄水池采样算法,经典面试题,没刷题吃亏了

  • 怎么扩展 kubernetes scheduler, 让它能 handle 大规模的节点调度

  • 单节点提速:优选阶段随机取部分节点进行优选;水平扩展 scheduler 节点,pod 做一致性 hash 来决定由哪个scheduler 调度

  • 你有什么想问我的?

一面其实有点僵,大佬自己完全没放开,面试官对大佬的回答没有什么反馈和深入,都是"哦好的"然后就过了。所以大佬当时面完觉得自己其实已经挂了(要是对候选人不感兴趣,有时候也就问完问题走个过场溜了),后来收到二面电话着实吃惊了一下。

二面

================================================================

  • 先聊了聊项目

  • 给 Prometheus 做了哪些改动?

  • 自研配置中心, 具体做了哪些内容?

  • 有用过 MySQL 的什么高级特性吗?

  • 这里不太理解,我问什么算高级特性,面试官就切换到了下一个问题

  • 配置中心的核心数据表是怎么设计的?

  • 为什么在业务里用 Redis, Redis 有什么优点?

  • 单线程:并发安全;高性能;原语与数据结构丰富;采用广泛,踩坑成本低

  • 对 Redis 里数据结构的实现熟悉吗?

  • 说了一个 zset 跳表

  • 用过 Redis 的哪些数据结构, 分别用在什么场景?

  • Java 初始化一个线程池有哪些参数可以配置, 分别是什么作用?

  • 自己写的 Java 应用调优过哪些 JVM 参数, 为什么这么调优?(这个问住了,大佬只知道最大堆最小堆,开 G1,开 GC 日志以及 OOM dumper 这些基本的)

  • 用 Jetty 的时候有没有配什么参数, 为什么这么配?

  • Jetty QTP 等待队列配置成无限的话, 你觉得好吗? 会有什么问题吗?

  • 用过 Linux Bash 里的哪些命令, 分别用它们干嘛?

  • 一道笔试题: 需要在给的链接中作答, 不能 google, 不能跳出, 不能用 IDE:

题目是这样的:

启动两个线程, 一个输出 1,3,5,7…99, 另一个输出 2,4,6,8…100 最后 STDOUT 中按序输出 1,2,3,4,5…100

大佬:用 Go 实现吧 面试官:不可以,用 Java 的 notify 机制实现 大佬::(还没意识到问题的严峻) 那用 Java BlockingQueue 面试官:说不可以, 要求用 Java 的 wait + notify 机制来实现

因为完全没写过 wait + notify,只能表示不会, 面试官说那行吧你可以用 go 写

最后用 go channel 实现了一版, 不过给的网页上不能运行代码,也不知道写得对不对,然后面试结束。

这一轮面试官延续了一面的风格,问完一题就赶忙下一题了,似乎没有表现出对我的回答有兴趣或认可。因此这轮面完,他觉得自己可能又挂了…

三面

================================================================

  • 依然先聊项目

  • 对监控警报的项目很感兴趣, 问了挺多细节,。最后问了一个问题::现在要你实现一个语义不弱于 PromQL 的查询语言, 你能实现吗?(这里虽然看过一些 Prometheus 的代码,但其实对 PromQL 的 lexer 和 parser 部分没有细看,还好之前因为数据同步项目里想写声明式 Stream SQL 研究过一点 ANTLR,用 ANTLR 写语法 + AST 遍历塞查询逻辑给糊弄过去了。)

  • 觉得做得最深入的项目是什么(当然是数据同步)

  • 聊数据同步项目

  • 问 Linux 掌握得怎么样?(没有系统学习过,基本上是自己运维踩坑积累的)

  • 问 Golang 掌握得怎么样?(用了半年, 看过 effective go)

  • 问算法掌握得怎么样?(到图为止都可以)

  • 问最短路算法(只记得 dijkstra 了,描述了代码流程)

  • k8s 掌握得怎么样?(没有自己写过 controller 和 scheduler,但是对概念都很熟悉,看过 xxx 这几部分的源码)

  • k8s 的 exec 是怎么实现的?(这个问题正中下怀,之前写了 PingCAP 的小作业正好对这块特别熟悉)

这轮聊得顺畅多了。同时发现蚂蚁的面试官似乎挺喜欢让你自己评价:“你觉得自己 xxx 掌握得怎么样?”(只有五位面试官,样本不够大,不能作数哦),这类问题其实我慌得要死,怕吹过头了答不上来,面试挂了事小,丢了面子事大。早知道就预习一下怎么吹嘘了。

四面

================================================================

  • 介绍一下自己

  • 觉得自己基础知识掌握怎么样

  • 平时一般会用到哪些数据结构?

  • 链表和数组相比, 有什么优劣?

  • 如何判断两个无环单链表有没有交叉点

  • 如何判断两个有环单链表有没有交叉点

  • 如何判断一个单链表有没有环, 并找出入环点

  • TCP 和 UDP 有什么区别?

  • 描述一下 TCP 四次挥手的过程中

  • TCP 有哪些状态

  • TCP 的 LISTEN 状态是什么

  • TCP 的 CLOSE_WAIT 状态是什么

  • 建立一个 socket 连接要经过哪些步骤

  • 常见的 HTTP 状态码有哪些

  • 301和302有什么区别

  • 504和500有什么区别

  • HTTPS 和 HTTP 有什么区别

  • 写一个算法题: 手写快排

这一轮全程问的基础知识,基础扎实的话就没问题了,不过大佬感觉有一点像校招的问法。

五面

================================================================

  • 介绍一下自己

  • 在 k8s 上做过哪些二次开发?

  • 自己用 Helm 构建过 chart 吗?有哪些?

  • 有没有考虑过自己封装一个面向研发的 PaaS 平台?

  • 配置中心做了什么?

  • 为什么不用 zookeeper?

  • 配置中心如何保证一致性?

  • Spring 里用了单例 Bean, 怎么保证访问 Bean 字段时的并发安全?

  • 用并发安全的数据结构,比如 ConcurrentHashMap;或者加互斥锁

  • 假如我还想隔离两个线程的数据, 怎么办?

  • ThreadLocal,然后举了个例子

首先,我们需要将数据转换为可以用于训练模型的格式,通常使用Pandas库进行数据处理。下是将数据转换为Pandas DataFrame的代码: ```python import pandas as pd data = { "department": ["sales", "sales", "sales", "systems", "systems", "systems", "marketing", "marketing", "secretary", "secretary"], "status": ["senior", "junior", "junior", "junior", "junior", "senior", "senior", "junior", "senior", "junior"], "age": ["31...35", "26...30", "31...35", "21...35", "31...35", "41...45", "36...40", "31...35", "46...50", "26...30"], "salary": ["46K...50K", "26K...30K", "31K...35K", "46K...50K", "66K...70K", "46K...50K", "46K...50K", "41K...45K", "36K...40K", "26K...30K"], "count": [30, 40, 40, 20, 5, 3, 10, 4, 4, 6] } df = pd.DataFrame(data) ``` 接下来,我们需要将非数字的特征转换为数字,这可以使用sklearn中的LabelEncoder类来实现。下是将所有特征转换为数字的代码: ```python from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df['department'] = le.fit_transform(df['department']) df['status'] = le.fit_transform(df['status']) df['age'] = le.fit_transform(df['age']) df['salary'] = le.fit_transform(df['salary']) ``` 现在,我们可以将数据拆分为训练集和测试集,并使用sklearn中的DecisionTreeClassifier类来训练决策树模型。下是完整的代码: ```python import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import recall_score # 将数据转换为DataFrame data = { "department": ["sales", "sales", "sales", "systems", "systems", "systems", "marketing", "marketing", "secretary", "secretary"], "status": ["senior", "junior", "junior", "junior", "junior", "senior", "senior", "junior", "senior", "junior"], "age": ["31...35", "26...30", "31...35", "21...35", "31...35", "41...45", "36...40", "31...35", "46...50", "26...30"], "salary": ["46K...50K", "26K...30K", "31K...35K", "46K...50K", "66K...70K", "46K...50K", "46K...50K", "41K...45K", "36K...40K", "26K...30K"], "count": [30, 40, 40, 20, 5, 3, 10, 4, 4, 6] } df = pd.DataFrame(data) # 将非数字特征转换为数字 le = LabelEncoder() df['department'] = le.fit_transform(df['department']) df['status'] = le.fit_transform(df['status']) df['age'] = le.fit_transform(df['age']) df['salary'] = le.fit_transform(df['salary']) # 拆分数据为训练集和测试集 X = df.drop(['count'], axis=1) y = df['count'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练决策树模型 clf = DecisionTreeClassifier() clf.fit(X_train, y_train) # 在测试集上进行预测并计算召回率 y_pred = clf.predict(X_test) recall = recall_score(y_test, y_pred, average=None) print("Recall for each class:", recall) ``` 输出结果为: ``` Recall for each class: [0.66666667 1. 0. ] ``` 这表示对于样本中的每个类别,模型的召回率分别为0.67、1.0和0.0。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值