定义
朗斯基行列式Wronskian determinant是用来判断多个函数之间是不是线性相关的。线性相关就是概念比较复杂,通俗地讲,两个向量之间是不是线性相关,就是看它们二者是不是倍数关系,如果是倍数关系,那么两者是线性相关的。对于多个向量,就是说其中一个向量能不能表示为其他向量的线性组合,如果可以,那么是线性相关的,如果不可以,则是线性无关的。
函数可以看成是函数空间
C
[
a
,
b
]
C_{[a,b]}
C[a,b]上的向量,
[
a
,
b
]
[a,b]
[a,b]是定义域。朗斯基行列式是判断多个函数之间的线性相关的,它是由函数的
1
1
1到
n
−
1
n-1
n−1阶导数组成的矩阵的行列式,公式如下:
∣
f
1
(
x
)
f
2
(
x
)
⋯
f
n
(
x
)
f
1
′
(
x
)
f
2
′
(
x
)
⋯
f
n
′
(
x
)
⋮
⋮
⋱
⋮
f
1
(
n
−
1
)
(
x
)
f
2
(
n
−
1
)
(
x
)
⋯
f
n
(
n
−
1
)
(
x
)
∣
\begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_n(x)\\ f'_1(x) & f'_2(x) & \cdots & f'_n(x)\\ \vdots & \vdots & \ddots & \vdots\\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x)\\ \end{vmatrix}
f1(x)f1′(x)⋮f1(n−1)(x)f2(x)f2′(x)⋮f2(n−1)(x)⋯⋯⋱⋯fn(x)fn′(x)⋮fn(n−1)(x)
朗斯基行列式如果在定义域内存在一个点
x
0
x_0
x0不等于0,则函数组线性无关。但是反过来不一定,也就是说朗斯基行列式为0,推不出函数线性相关。
举例
来看这三个函数:
2
x
2
+
3
,
x
2
,
1
2x^2+3,x^2,1
2x2+3,x2,1
这三个函数一看就是线性相关的,因为
2
x
2
+
3
2x^2+3
2x2+3就是
x
2
x^2
x2和
1
1
1的线性组合,组合系数分别为
2
2
2和
3
3
3。他们的朗斯基行列式是什么样子呢?
∣
2
x
2
+
3
x
2
1
4
x
2
x
0
4
2
0
∣
=
−
∣
4
x
2
x
4
2
∣
=
0
\begin{vmatrix} 2x^2+3 & x^2 & 1\\ 4x & 2x & 0\\ 4 & 2& 0\\ \end{vmatrix}=-\begin{vmatrix} 4x & 2x \\ 4 & 2\\ \end{vmatrix}=0
2x2+34x4x22x2100
=−
4x42x2
=0
再看一个例子,这两个函数:
x
2
,
x
∣
x
∣
x^2,x|x|
x2,x∣x∣,他们的朗斯基行列式是:
∣
x
2
x
∣
x
∣
2
x
2
∣
x
∣
∣
=
=
0
\begin{vmatrix} x^2 & x|x|\\ 2x & 2|x| \\ \end{vmatrix}==0
x22xx∣x∣2∣x∣
==0
但是很明显,分区间的,在
x
≥
0
x\ge 0
x≥0的时候,
x
2
=
x
∣
x
∣
x^2=x|x|
x2=x∣x∣,但是当
x
≤
0
x\le 0
x≤0的时候
x
2
=
−
x
∣
x
∣
x^2=-x|x|
x2=−x∣x∣,所以并不是线性相关的。所以从朗斯基行列式为0推不出线性相关。这个例子是不同的区间,线性相关系数不一样,所以不能算线性相关。
再举个例子,
x
2
,
x
,
1
x^2,x,1
x2,x,1,肉眼看上去是肯定线性无关的,它的朗斯基行列式是什么样子的呢?
∣
x
2
x
1
2
x
1
0
2
0
0
∣
=
2
\begin{vmatrix} x^2 & x & 1\\ 2x & 1 & 0\\ 2 &0& 0\\ \end{vmatrix}=2
x22x2x10100
=2