自动驾驶商业化落地研究

本文探讨了自动驾驶的未来图景,包括L4及以上级别的自动驾驶汽车及其“车-路-云”一体化的发展方向。文章指出,商业化落地面临的挑战主要在于技术,如算法的推理能力和训练效率,以及成本问题。自动驾驶的商业化分为道路测试与商业化试点以及从ToB到ToC两个阶段,目前中国在政策支持和测试环境方面具有优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、未来图景

提到自动驾驶,我们可能会想到科幻片里各种未来交通工具在令人眼花缭乱的空中高架往来穿梭,甚至可以在空中无轨飞行。但这样的技术在近几十年还难以实现,在短期的未来我们可以预见的自动驾驶是由智能汽车、路侧智能设施和云计算相结合,辅以动态高精度地图,形成“车-路-云”一体化的智慧交通生态系统。

1.1 什么是自动驾驶

自动驾驶属于广义上的人工智能,是集计算机视觉、路径规划与控制、行为预测、定位于绘图、仿真交互等技术于一体的产品。表一是工信部发布《汽车驾驶自动化分级》分级标准,本文所讨论的自动驾驶是L4及以上的车辆。

https://img.36krcdn.com/20220104/v2_2048c34513b7453e80b4128cc3649b23_img_000

表一:驾驶自动化与划分要素的关系

1.2 自动驾驶的发展方向

自动驾驶的发展方向,主要有“纯智能汽车”和“车-路-云”一体化两种方案。前者对配套基础设施的要求较低,但对车的软硬件水平要求非常高,商业化相对困难。除商业化因素角度考虑外,“车-路-云”一体化更有助于提升效率,降低事故,优化社会整体出行水平。

形状  描述已自动生成

图一:纯智能汽车与“车-路-云”一体化方案对比

二、商业化落地的挑战

当前实现商业化落地所面临的主要挑战是技术和成本。

2.1 技术

    现阶段自动驾驶技术上的难点在于当前算法的推理能力弱和训练效率低等问题。自动驾驶算法主要包括感知和决策两个模块。其中感知模块用于对目标定位、识别、跟踪,占总体算法的70%左右。

2.2 成本

商业化实现可分为ToB和ToC两种模式。从成本角度考虑,当自动驾驶汽车的分摊成本低于司机薪酬时,自动驾驶将具备实现规模化运营条件。

ToB模式商用场景下自动驾驶车辆的优势在于系统替代司机后可以节省大量成本,该模式的缺点在于短期内难以落地,在实现盈利之前,企业面临巨大的资金挑战。

ToC模式的优势在于商业化落地相对容易,缺点在于附加值低,出现一些事故后给公众带来对自动驾驶的负面认知。

图片包含 箭头  描述已自动生成

图二:ToB和ToC自动驾驶商业化路径对比

2.3 其他

一方面基础设施的建设需要政府牵头进行持续的资金投入,另一方面与之相配套的法律法规、监管制度也需要逐步完善。

三、商业化发展阶段

自动驾驶的商业化分为两个阶段。(1)道路测试与商业化试点;(2)从ToB到ToC。

3.1道路测试与商业化试点

自动驾驶的发展首先离不开政策方面的支持,相比其他国家,中国拥有较为理想的测试环境,待实验产品往往能更快地得到测试,并且得到足够多的用户反馈。2021年,自动驾驶相关政策法规密集落地,多项改革措施破冰而出。与此同时,许多地方政府也在进行适度超前的政策探索。

3.2从ToB到ToC

    从商业模式上看,无人车可以分为面向个人消费者和面向企业两大类。面向个人消费者的无人车需要完成复杂的派单及各种用户服务,而面向企业的无人车则不需要担心这些细节。ToB的市场体量虽远小于ToC,但商业变现相对容易,利于企业度过技术和成本最初的瓶颈期。

图示  描述已自动生成

图三:自动驾驶商业化落地的主要方式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值