给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
示例 1: 输入:nums = [-4,-1,0,3,10] 输出:[0,1,9,16,100] 解释:平方后,数组变为 [16,1,0,9,100],排序后,数组变为 [0,1,9,16,100]
示例 2: 输入:nums = [-7,-3,2,3,11] 输出:[4,9,9,49,121]
基本思路:
首先我想的是,
两个指针,i,j分别位于数组的第一个元素和最后一个元素,固定j,控制i<j
当num[j]>num[i]时候,比较num[j]与num【i~j-1】的元素,如果找到一个元素num[t],t【i,j-1】,num[t]>num[j]大的时候,new[k-1]=num[t].,。。。。还不如全部平方,然后统一排序呢
其实,对于有序数组而言,绝对值大的都在两头,唯一复杂的就是左段可能会有负数,所以,当
两个指针,i,j分别位于数组的第一个元素和最后一个元素,固定j,控制i<j,当num[j]>num[i]时候,比较num[j]与num【i~j-1】的元素,如果找到一个元素num[t],t【i,j-1】,num[t]>num[j]大的时候,new[k-1]=num[t].,这个时候很快就会达到p【t,j-2】(因为越往中间绝对值越小,平方就越小),num[p]<num[j-2], 所以这个时候继续按着j移动,重复第一步就行。
代码如下:
#include<iostream>
#include<cmath>
#include<vector>
using namespace std;
class ArraySolution {
public:
vector<int> OrderedarraySquare(vector<int>& num) {
vector<int>newnum(num);
//vector<int> num(newnum);
int k = num.size() - 1;
//for(int i=0,j=num.size()-1;i<=j;i++,j--){
for (int i = 0, j = num.size() - 1; i<=j;) {
if (pow(num[j], 2) > pow(num[i], 2)) {
newnum[k--] = pow(num[j], 2);
j--;//当j指向的元素比i大时,也可能存在i比j-1的大(尤其是i指向的元素为负数时)
}
else {
newnum[k--] = pow(num[i], 2);
i++;
}
}
return newnum;
}
};
int main() {
vector<int>num = { -2,1,2,3,5 };
ArraySolution s1;
vector<int>result;
result = s1.OrderedarraySquare(num);
for (auto i : result) {
cout << i << " ";
}
return 0;
}
计算结果: