1.1 命题逻辑 笔记

命题是一个陈述语句,它或真或假,但不能既真又假。

        我们用字母来表示命题变量(或称为语句变量),即表示命题的变量,就像用字母表示数值变量那样。习惯上用字母p、q,r,s,···表示命题变量。如果一个命题是真命题,则它的真值为真,用T表示;如果它是假命题,则真值为假,用F表示。不能用简单的命题来表示的命题称为原子命题

复合命题指由已知命题用逻辑运算符组合而来的新命题。

       定义1:令p为一命题,则p的否定记作\bar{p},指“不是p所指的情形”。命题\bar{p}读作”非p“。p的否定\bar{p}的真值和p的真值相反。

       定义2: 令p和q的命题。p、q的合取即命题”p并且q“,记作p\wedgeq。当p和q都是真时,p\wedgeq

命题为真,否则为假。 

       定义3:令p和q为命题。p和q的析取即命题”p或q“,记作p\veeq。当p和q均为假时,合取命题p\veeq为假,否则为真。

       定义4: 令p和q为命题。p和q的异或(记作p\bigoplusq)是这样一个命题:当p和q中恰好只有一个为真时命题为真,否则为假。

       定义5: 令p和q为命题。条件语句p\rightarrowq是命题”如果p,则q“。当p为真而q为假时,条件语句p\rightarrowq 为假,否则为真。在条件语句p\rightarrowq中,p称为假设(前提),q称为结论。 

       定义6: 令p和q为命题。双条件语句p\leftrightarrowq是命题”p当且仅当q”。当p和q有同样的真值时,双条件语句为真,否则为假。双条件语句也称为双向蕴含。

1.1.5逻辑运算符的优先级

(1)否定运算符先于所有其他逻辑运算符。

(2)合取运算符优先于析取运算符。

(3)条件运算符和双条件运算符的优先级低于合取运算符和析取运算符的优先级。

       定义7 比特串是0比特或多比特的序列。比特串的长度就是它所含比特的数目。

 

离散数学命题逻辑是一种研究命题之间关系的数学分支。命题逻辑主要涉及命题的定义、联结词(如非、与、或、蕴含、等价、异或)的运算规则及其真值表、命题的语义等。等价是命题逻辑中重要的概念之一。 当两个命题具有相同的真值时,它们被称为等价命题。例如,命题P与Q分别是“今天是周日”和“明天是周一”,那么这两个命题的真值相同时,即今天是周日的时候明天是周一,它们可以称为等价命题。 在离散数学中,我们可以使用真值表来判断两个命题是否等价。真值表是将所有可能的命题取值列出,并对每个命题的取值进行判断的表格。通过比较真值表中相应的列的取值,可以判断两个命题是否等价。 例如,在真值表的第三列中,如果两个命题的取值均为真(T),那么这两个命题等价。如果两个命题的取值均为假(F),也可以认为这两个命题等价。但如果它们的取值一个为真一个为假,那么它们不等价。 以命题P:“今天天气晴朗”和命题Q:“太阳照耀着”为例,它们的等价关系可以通过真值表进行判断。在真值表中,当天气晴朗时太阳照耀着,因此P和Q的真值列完全相同,即它们是等价的。 综上所述,离散数学中的命题逻辑通过真值表等方法来判断命题的等价关系。等价命题在数学和计算机科学中有着广泛的应用,可以帮助我们简化、判断、推导命题的逻辑关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值