python数据分析与可视化——第三章实训

该博客主要介绍了鸢尾花数据集的处理过程,包括数据导入、去除索引号、数据类型定义以及统计分析。通过numpy库对数据进行排序、去重,并计算了花瓣长度的和、均值、标准差、最小值和最大值,展示了基础的数据清洗和统计操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.导入模块

import csv
import numpy as np

2.获取数据

iris_data=[]
with open("F:\专业课程作业\python时空数据分析与可视化\iris.csv","r") as f:
    #使用csv.reader读取f中的文件
    csv_reader=csv.reader(f)
    #读取第一行各列的标题
    birth_header=next(csv_reader)
    #将数据存入列表中
    for row in csv_reader:
        iris_data.append(row)
iris_data

3.数据清洗:去掉索引号

# 3.数据清洗:去掉索引号
iris_list=[]
for row in iris_data:
    iris_list.append(tuple(row[1:]))
iris_list

4.数据统计

# 4.数据统计
# (1)创建数据类型
datatype=np.dtype([("Sepal.Length",np.float_),\
                   ("Sepal.Width",np.float_),\
                   ("Petal.Length",np.float_),\
                   ("Petal.Width",np.float_),\
                   ("Species",np.str_,40)])
print(
### 关于Python进行数据分析可视化的实践培训或教程 #### 导入必要的库 为了实现有效的数据分析可视化,在开始任何项目之前,先要确保安装并导入所有必需的库。这通常包括`numpy`, `pandas`, `seaborn` 和 `matplotlib.pyplot`. 这些工具提供了强大的功能来处理数据集以及创建高质量图表。 ```python import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # 设置字体以便正确显示中文标签 plt.rcParams['font.family'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False ``` #### 加载数据集 接下来,加载用于分析的数据文件。这里假设有一个CSV格式的学生行为记录表,其中包含了不同学生的课堂活动详情及其最终的成绩等级(Low, Medium, High)[^3]. ```python df = pd.read_csv('student_behavior.csv') print(df.head()) ``` #### 创建子图布局 通过构建一个多面板图形界面可以更直观地比较多个变量之间的关系。下面的例子展示了如何设置一个2×2网格结构,并调整其大小以适应屏幕空间[^4]. ```python fig, axes = plt.subplots(2, 2, figsize=(14, 10)) ``` #### 绘制条形图展示成绩其他因素的关系 利用Seaborn中的`sns.barplot()`函数绘制四张独立但关联紧密的柱状图,每一张都反映了特定方面(如浏览课件次数、参讨论频率等)对于学生成绩的影响程度。注意这里的顺序参数指定了成绩级别的排列方式. ```python sns.barplot(x='成绩', y='浏览课件次数', data=df, order=['L', 'M', 'H'], ax=axes[0, 0]) sns.barplot(x='成绩', y='浏览公告次数', data=df, order=['L', 'M', 'H'], ax=axes[0, 1]) sns.barplot(x='成绩', y='举手次数', data=df, order=['L', 'M', 'H'], ax=axes[1, 0]) sns.barplot(x='成绩', y='讨论次数', data=df, order=['L', 'M', 'H'], ax=axes[1, 1]) plt.tight_layout() plt.show() ``` 上述代码片段不仅涵盖了基本的数据预处理过程,还介绍了怎样运用Seaborn库来进行复杂而美观的数据呈现工作。这对于初学者来说是一个很好的起点,能够帮助理解Python在实际应用中是如何支持高效的数据探索表达的[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值