Datawhale AI夏令营第四期魔搭-AIGC文生图方向Task2笔记

纯小白记录Datawhale AI夏令营第四期魔搭-AIGC文生图方向Task2的学习

首先了解一下知识背景和AI生图的历史

背景知识

AIGC(AI-Generated Content)是通过人工智能技术自动生成内容的生产方式,很早就有专家指出,AIGC将是未来人工智能的重点方向,也将改造相关行业和领域生产内容的方式。

AI生图则是其中最早被大众所熟知并广泛被认可的AIGC领域。

对所有人来说,定期关注AI生图的最新能力情况都十分重要:

对于普通人来说,可以避免被常见的AI生图场景欺骗,偶尔也可以通过相关工具绘图。

对于创作者来说,通过AI生图的工具可以提效,快速制作自己所需要的内容。

对于技术人来说,了解AI生图的能力的玩法,可以更好地针对自己的业务进行开发和使用,甚至攻克难题开发更实用的工具。

AI生图的历史

最早的AI生图可追溯到20世纪70年代,当时由艺术家哈罗德·科恩(Harold Cohen)发明AARON,可通过机械臂输出作画。

现代的AI生图模型大多基于深度神经网络基础上训练,最早可追溯到2012年吴恩达训练出的能生成“猫脸”的模型。

它使用卷积神经网络(CNN)训练,证明了深度学习模型能够学习到图像的复杂特征。

2015年,谷歌推出了“深梦”(Deep Dream)图像生成工具,类似一个高级滤镜,可以基于给定的图片生成梦幻版图片。

2021 年 1 月 OpenAI 推出DALL-E模型(一个深度学习算法模型,是GPT-3 语言处理模型的一个衍生版本),能直接从文本提示“按需创造”风格多样的图形设计。

面临的挑战

目前大部分的模型,已经具备了去除 “AI味” 的能力,且可能存在容易误导他人的情况,这时候我们想辨别可能需要非常仔细地——

  • 观察图片的细节。仔细检查人物的面部特征,尤其是眼睛和嘴巴

  • 检查光线和阴影。分析图片中的光源是否一致,阴影的方向是否与光源相符,是否存在不自然的光线或阴影

  • 分析像素。放大图片,寻找是否有模糊或像素化的部分。

  • 注意背景。检查背景中是否有不协调的元素,比如物体边缘是否平滑,背景中是否有不自然的重复模式。

而这些细节上的AI特性,也许就是我们在某些特定场景下需要解决的挑战。

利用AI助手精读代码

在Task1中,我们跑了一遍代码,但是我对代码的架构还是一脸懵,搞不明白,所以Task2就利用AI助手——通义千问来帮助我们解读代码。

分析代码主体架构

1.安装和卸载依赖包

使用 !pip 命令来安装或卸载 Python 包。包括:

simple-aesthetics-predictor, data-juicer, peft, lightning, pandas, torchvision, 和 DiffSynth-Studio 的安装。

卸载 pytorch-lightning(使用 -y 自动确认卸载)。

!pip install simple-aesthetics-predictor # 安装simple-aesthetics-predictor
!pip install -v -e data-juicer # 安装data-juicer
!pip uninstall pytorch-lightning -y # 卸载pytorch-lightning
!pip install peft lightning pandas torchvision # 安装 peft lightning pandas torchvision
!pip install -e DiffSynth-Studio # 安装DiffSynth-Studio

2.加载数据集

使用 ModelScope 的 MsDataset 类加载名为 AI-ModelScope/lowres_anime 的数据集,并指定子集名称为 default 和分割为 train,缓存目录设置为 /mnt/workspace/kolors/data。

from modelscope.msdatasets import MsDataset  #引入数据集模块msdatasets
ds = MsDataset.load(
    'AI-ModelScope/lowres_anime',
    subset_name='default',
    split='train',
    cache_dir="/mnt/workspace/kolors/data" # 指定缓存目录
) # 从魔搭数据集中下载数据集AI-ModelScope/lowres_anime,赋值给参数ds

3.数据预处理

将数据集中的图像转换为 RGB 模式,并保存到指定目录。

创建包含图像路径和文本描述的元数据文件 metadata.jsonl。

编写并保存 data_juicer_config.yaml 配置文件,用于后续的数据过滤和处理。

os.makedirs("./data/lora_dataset/train", exist_ok=True) # 创建文件夹./data/lora_dataset/train
os.makedirs("./data/data-juicer/input", exist_ok=True) # 创建文件夹./data/data-juicer/input
with open("./data/data-juicer/input/metadata.jsonl", "w") as f:
    for data_id, data in enumerate(tqdm(ds)): # 遍历数据集ds
        image = data["image"].convert("RGB") # 将数据集的图片转换为RGB
        image.save(f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg") # 保存数据集的图片
        metadata = {"text": "二次元", "image": [f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg"]} # 生成当前图片的索引数据
        f.write(json.dumps(metadata)) # 将索引数据写入文件./data/data-juicer/input/metadata.jsonl
        f.write("\n")

# 配置data-juicer,并进行数据筛选过滤
# 配置过滤的规则

# 保存data-juicer配置到data/data-juicer/data_juicer_config.yaml
with open("data/data-juicer/data_juicer_config.yaml", "w") as file:
    file.write(data_juicer_config.strip())
# data-juicer开始执行数据筛选
!dj-process --config data/data-juicer/data_juicer_config.yaml

4.使用 Data-Juicer 进行数据处理

使用 dj-process 命令根据配置文件对数据进行过滤和处理,生成 result.jsonl 文件。

texts, file_names = [], [] # 定义两个空列表,分别存储图片描述和图片名称
os.makedirs("./data/lora_dataset_processed/train", exist_ok=True) # 创建文件夹./data/lora_dataset_processed/train
with open("./data/data-juicer/output/result.jsonl", "r") as file: # 打开前面data-juicer筛选的图片索引文件./data/data-juicer/output/result.jsonl
    for data_id, data in enumerate(tqdm(file.readlines())): # 遍历文件./data/data-juicer/output/result.jsonl
        data = json.loads(data) # 将json字符串转换为对象
        text = data["text"] # 获取对象中的text属性,也就是图片的描述信息
        texts.append(text) # 将图片的描述信息添加到texts列表中
        image = Image.open(data["image"][0]) # 获取对象中的image属性,也就是图片的路径,然后用这个路径打开图片
        image_path = f"./data/lora_dataset_processed/train/{data_id}.jpg" # 生成保存图片的路径
        image.save(image_path) # 将图片保存到./data/lora_dataset_processed/train文件夹中
        file_names.append(f"{data_id}.jpg") # 将图片名称添加到file_names列表中

5.数据整理与训练

读取 result.jsonl 文件中的数据,并将其转换为 Pandas DataFrame,然后保存为 CSV 文件,并且将图片保存到./data/lora_dataset_processed/train文件夹下。

下载模型download_models(["Kolors", "SDXL-vae-fp16-fix"])。

在前面模型的基础上,执行Lora微调训练。

加载微调后的模型。

# 加载LoRA配置并注入模型
def load_lora(model, lora_rank, lora_alpha, lora_path):
    lora_config = LoraConfig(
        r=lora_rank, # 设置LoRA的秩(rank)
        lora_alpha=lora_alpha, # 设置LoRA的alpha值,控制LoRA的影响权重
        init_lora_weights="gaussian", # 初始化LoRA权重为高斯分布
        target_modules=["to_q", "to_k", "to_v", "to_out"], # 指定要应用LoRA的模块
    )
    model = inject_adapter_in_model(lora_config, model) # 将LoRA配置注入到模型中
    state_dict = torch.load(lora_path, map_location="cpu") # 加载LoRA微调后的权重
    model.load_state_dict(state_dict, strict=False) # 将权重加载到模型中,允许部分权重不匹配
    return model # 返回注入LoRA后的模型
# 加载预训练模型
model_manager = ModelManager(
    torch_dtype=torch.float16, # 设置模型的数据类型为float16,减少显存占用
    device="cuda", # 指定使用GPU进行计算
    file_path_list=[
        "models/kolors/Kolors/text_encoder", # 文本编码器的路径
        "models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors", # UNet模型的路径
        "models/kolors/Kolors/vae/diffusion_pytorch_model.safetensors" # VAE模型的路径
    ]
)

6.图像生成

设置正向提示词,反向提示词,执行次数,图片尺寸

设置随机种子,控制图片是否可以重复生成,并将图像保存为 .jpg 文件。

torch.manual_seed(0) # 设置随机种子,确保生成的图像具有可重复性。如果想要每次生成不同的图像,可以将种子值改为随机值。
image = pipe(
    prompt="二次元,一个紫色短发小女孩,在家中沙发上坐着,双手托着腮,很无聊,全身,粉色连衣裙", # 设置正向提示词,用于指导模型生成图像的内容
    negative_prompt="丑陋、变形、嘈杂、模糊、低对比度", # 设置负向提示词,模型会避免生成包含这些特征的图像
    cfg_scale=4, # 设置分类自由度 (Classifier-Free Guidance) 的比例,数值越高,模型越严格地遵循提示词
    num_inference_steps=50, # 设置推理步数,步数越多,生成的图像细节越丰富,但生成时间也更长
    height=1024, width=1024, # 设置生成图像的高度和宽度,这里生成 1024x1024 像素的图像
)
image.save("1.jpg") # 将生成的图像保存为 "1.jpg" 文件

7.合并图像

最后,将生成的多个图像合并成一个大图像,并调整大小。

images = [np.array(Image.open(f"{i}.jpg")) for i in range(1, 9)]  # 读取1.jpg到8.jpg的图像,转换为numpy数组,并存储在列表images中
image = np.concatenate([  # 将四组图像在垂直方向上拼接
    np.concatenate(images[0:2], axis=1),  # 将第1组(images[0:2])的两张图像在水平方向上拼接
    np.concatenate(images[2:4], axis=1),  # 将第2组(images[2:4])的两张图像在水平方向上拼接
    np.concatenate(images[4:6], axis=1),  # 将第3组(images[4:6])的两张图像在水平方向上拼接
    np.concatenate(images[6:8], axis=1),  # 将第4组(images[6:8])的两张图像在水平方向上拼接
], axis=0)  # 将四组拼接后的图像在垂直方向上拼接
image = Image.fromarray(image).resize((1024, 2048))  # 将拼接后的numpy数组转换为图像对象,并调整大小为1024x2048像素
image  # 输出最终生成的图像对象,用于显示图像

实战演练一一基于话剧的连环画制作

具体的场景图片,例如

1、女主正在上课

2、开始睡着了

3、进入梦乡,梦到自己站在路旁

4、王子骑马而来

5、两人相谈甚欢

6、一起坐在马背上

7、下课了,梦醒了

8、又回到了学习生活中

生图提示词要求

1、风格为古风

2、根据场景确定是使用全身还是上半身

3、人物描述

4、场景描述

5、做啥事情

例子: 古风,水墨画,一个黑色长发少女,坐在教室里,盯着黑板,深思,上半身,红色长裙

心得体会及接下去的学习方向

本次通过完成Task2,我对AI生图的代码模型有了更深的认识,基本看懂了AI生图的原理,了解了代码框架,但是我不太懂要如何优化代码提高效率,所以这是我今后学习的方向,希望能学到更多AI生图的模型。

以及今后如果有机会希望能自己训练一个模型,但是数据的爬取我可能还需要去学习如何爬取。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值