洛谷P1042 乒乓球

[NOIP2003 普及组] 乒乓球

题目背景

国际乒联现在主席沙拉拉自从上任以来就立志于推行一系列改革,以推动乒乓球运动在全球的普及。其中 11 11 11 分制改革引起了很大的争议,有一部分球员因为无法适应新规则只能选择退役。华华就是其中一位,他退役之后走上了乒乓球研究工作,意图弄明白 11 11 11 分制和 21 21 21 分制对选手的不同影响。在开展他的研究之前,他首先需要对他多年比赛的统计数据进行一些分析,所以需要你的帮忙。

题目描述

华华通过以下方式进行分析,首先将比赛每个球的胜负列成一张表,然后分别计算在 11 11 11 分制和 21 21 21 分制下,双方的比赛结果(截至记录末尾)。

比如现在有这么一份记录,(其中 W \texttt W W 表示华华获得一分, L \texttt L L 表示华华对手获得一分):

WWWWWWWWWWWWWWWWWWWWWWLW \texttt{WWWWWWWWWWWWWWWWWWWWWWLW} WWWWWWWWWWWWWWWWWWWWWWLW

11 11 11 分制下,此时比赛的结果是华华第一局 11 11 11 0 0 0 获胜,第二局 11 11 11 0 0 0 获胜,正在进行第三局,当前比分 1 1 1 1 1 1。而在 21 21 21 分制下,此时比赛结果是华华第一局 21 21 21 0 0 0 获胜,正在进行第二局,比分 2 2 2 1 1 1。如果一局比赛刚开始,则此时比分为 0 0 0 0 0 0。直到分差大于或者等于 2 2 2,才一局结束。

你的程序就是要对于一系列比赛信息的输入( WL \texttt{WL} WL 形式),输出正确的结果。

输入格式

每个输入文件包含若干行字符串,字符串有大写的 W \texttt W W L \texttt L L E \texttt E E 组成。其中 E \texttt E E 表示比赛信息结束,程序应该忽略 E \texttt E E 之后的所有内容。

输出格式

输出由两部分组成,每部分有若干行,每一行对应一局比赛的比分(按比赛信息输入顺序)。其中第一部分是 11 11 11 分制下的结果,第二部分是 21 21 21 分制下的结果,两部分之间由一个空行分隔。

样例 #1

样例输入 #1

WWWWWWWWWWWWWWWWWWWW
WWLWE

样例输出 #1

11:0
11:0
1:1

21:0
2:1

提示

每行至多 25 25 25 个字母,最多有 2500 2500 2500 行。

(注:事实上有一个测试点有 2501 2501 2501 行数据。)

【题目来源】

NOIP 2003 普及组第一题

题意:给你若干个字符(注意题目给的所有字符是一组数据,换句话说以‘E’结束),分别要你输出11制和21制回合的结果。一个回合结束的规则:先拿满11分,并且比对手多至少两分。(11:10这种情况回合未结束,还要继续打)。

考点:模拟(简单)
关键:理解题意,弄懂比赛规则。

核心代码:

void solve()
{
	ll x=0,y=0,xx=0,yy=0;
	char ch;
	while(1)
	{
		cin>>ch;
		if(ch=='E')
		{
			cout<<x<<":"<<y<<'\n';
			a[m]=xx;
			b[m++]=yy;
			break;
		}
		if(ch=='W')x++,xx++;
		else if(ch=='L')y++,yy++;
		if((x>=11||y>=11)&&abs(x-y)>=2)
		{
			cout<<x<<":"<<y<<'\n';
			x=0,y=0;
		}
		if((xx>=21||yy>=21)&&abs(xx-yy)>=2)
		{
			a[m]=xx;
			b[m++]=yy;
			xx=0,yy=0;
		}
	}
	cout<<'\n';
	for(int i=0;i<m;i++)
	{
		cout<<a[i]<<":"<<b[i]<<'\n';
	}
}
signed main()
{
	//TT
	solve();
	return 0;
}
### 关于洛谷 P1042 乒乓球问题的解题思路 对于该问题,核心在于模拟两个不同计分制度下的比赛过程。给定一系列字符作为输入,其中`W`代表华华得分,`L`代表平平得分,而`E`则表示当前局结束并进入下一局。 #### 输入处理逻辑 程序需逐个读取字符直至遇到`E`为止,在此期间依据所遇字符更新对应选手分数,并根据不同赛制规则判定是否某一方赢得了一局以及何时应开启新的一局[^2]。 #### 不同赛制下的胜负条件 - **11分制**:当任意一名玩家达到11分且领先对手至少两分时即获胜;若双方均达10分以上但差距不足两分,则继续游戏直到满足上述胜利条件。 - **21分制**:同样遵循先得规定分数(这里是21)且超出对方不少于两分者胜出的原则,只是起始目标分数更高一些[^3]。 ### C语言代码实现 下面给出一段完整的C语言源码用于解决这个问题: ```c #include <stdio.h> #define MAXN 1005 char game[MAXN]; int score_11[2], score_21[2]; void reset_scores() { score_11[0] = score_11[1] = 0; score_21[0] = score_21[1] = 0; } // 判断是否在一场比赛中达到了可以赢的状态 bool can_win(int *score, int target) { return (score[0]>=target || score[1]>=target) && abs(score[0]-score[1])>=2; } int main(){ while(scanf("%s",game)!=EOF){ bool is_end=false; char winner=' '; reset_scores(); for(int i=0; !is_end&&game[i]!='\0'; ++i){ switch(game[i]){ case 'W': ++score_11[0]; ++score_21[0]; break; case 'L': ++score_11[1]; ++score_21[1]; break; case 'E': if(can_win(score_11, 11)){ printf("11:%c %d-%d\n",(winner=(score_11[0]>score_11[1])?'H':'P'),score_11[0],score_11[1]); reset_scores(); // 准备下一个回合 } if(can_win(score_21, 21)){ printf("21:%c %d-%d\n", (winner=(score_21[0]>score_21[1])?'H':'P'),score_21[0],score_21[1]); reset_scores(); // 准备下一个回合 } is_end=true; break; } if(!is_end){ // 如果不是最后一轮打印中间状态 printf("11:"); if(winner==' ')printf("%d-%d\n",score_11[0],score_11[1]); else printf("-%d-%d\n",score_11[0],score_11[1]); printf("21:"); if(winner==' ')printf("%d-%d\n",score_21[0],score_21[1]); else printf("-%d-%d\n",score_21[0],score_21[1]); } } } } ``` 这段代码实现了对每一轮比赛中两位参赛者的得分情况进行记录,并按照两种不同的记分方式分别计算最终成绩。每当检测到一局结束符`E`时,会检查是否有选手符合各自赛制下的获胜标准,并据此输出相应结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值